首页> 外文期刊>Journal of Applied Physics >Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO_2/TiN devices
【24h】

Resistive switching and synaptic properties of fully atomic layer deposition grown TiN/HfO_2/TiN devices

机译:完全原子层沉积生长的TiN / HfO_2 / TiN器件的电阻转换和突触特性

获取原文
获取原文并翻译 | 示例
           

摘要

Recently proposed novel neural network hardware designs imply the use of memristors as electronic synapses in 3D cross-bar architecture. Atomic layer deposition (ALD) is the most feasible technique to fabricate such arrays. In this work, we present the results of the detailed investigation of the gradual resistive switching (memristive) effect in nanometer thick fully ALD grown TiN/HfO_2/TiN stacks. The modelling of the Ⅰ-Ⅴ curves confirms interface limited trap-assisted-tun-neling mechanism along the oxygen vacancies in HfO_2 in all conduction states. The resistivity of the stack is found to critically depend upon the distance from the interface to the first trap in HfO_2. The memristive properties of ALD grown TiN/HfO_2/TiN devices are correlated with the demonstrated neuromorphic functionalities, such as long-term potentiation/depression and spike-timing dependent plasticity, thus indicating their potential as electronic synapses in neuromorphic hardware.
机译:最近提出的新型神经网络硬件设计暗示了忆阻器在3D交叉结构中作为电子突触的用途。原子层沉积(ALD)是制造此类阵列的最可行技术。在这项工作中,我们提出了在纳米厚的完全ALD生长的TiN / HfO_2 / TiN叠层中逐步电阻切换(忆阻)效应的详细研究结果。 Ⅰ-Ⅴ曲线的模型证实了在所有传导状态下沿HfO_2中氧空位的界面受限的陷阱辅助隧穿机理。发现叠层的电阻率严格取决于从界面到HfO_2中的第一阱的距离。 ALD生长的TiN / HfO_2 / TiN装置的忆阻特性与已证明的神经形态功能相关,例如长期增强/抑制和尖峰时序依赖性可塑性,因此表明它们在神经形态硬件中作为电子突触的潜力。

著录项

  • 来源
    《Journal of Applied Physics》 |2015年第4期|044901.1-044901.7|共7页
  • 作者单位

    Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia,NRNU 'Moscow Engineering Physics Institute', 115409 Moscow, Russia;

    Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia;

    Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia;

    Moscow Institute of Physics and Technology, 141700 Moscow Region, Russia,NRNU 'Moscow Engineering Physics Institute', 115409 Moscow, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号