首页> 外文期刊>Journal of Applied Physics >Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography
【24h】

Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography

机译:使用轴外电子全息图和原子探针层析成像技术表征轴向Si-Ge纳米线异质结中的电性能

获取原文
获取原文并翻译 | 示例
           

摘要

Nanowires (NWs) consisting of P-doped Si/B-doped Ge axial heterojunctions were grown via vapor-liquid-solid synthesis using a combination of Au and AuGa catalyst particles. Off-axis electron holography (EH) was used to measure the electrostatic potential profile across the junction resulting from electrically active dopants, and atom-probe tomography (APT) was used to map total dopant concentration profiles. A comparison of the electrostatic potential profile measured from EH with simulations that were based on the APT results indicates that Ga atoms unintentionally introduced during AuGa catalyst growth were mostly electronically inactive. This finding was also corroborated by in situ electron-holography biasing experiments. Electronic band structure simulations guided by the experimental results helped to provide a much better explanation of the NW electrical behavior. Overall, this work demonstrates that the combination of EH, APT, in situ biasing, and simulations allows a more complete understanding of NW electrical properties to be developed.
机译:由金掺杂的Si / B掺杂的Ge轴向异质结组成的纳米线(NWs)通过结合使用Au和AuGa催化剂颗粒的气液固合成而生长。离轴电子全息术(EH)用于测量由电活性掺杂剂产生的跨结的静电势分布,而原子探针层析成像(APT)用于绘制总掺杂剂浓度分布图。通过EH测量的静电势曲线与基于APT结果的模拟结果的比较表明,在AuGa催化剂生长过程中无意引入的Ga原子大部分是电子惰性的。原位电子全息偏置实验也证实了这一发现。以实验结果为指导的电子能带结构模拟有助于对西北电学行为提供更好的解释。总的来说,这项工作表明,将EH,APT,原位偏置和仿真相结合,可以对NW的电学特性有更全面的了解。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第10期|104301.1-104301.8|共8页
  • 作者单位

    Department of Physics, Arizona State University, Tempe, Arizona 85287, USA;

    Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA;

    Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pennsylvania 15261, USA;

    Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA;

    Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;

    Department of Physics, Arizona State University, Tempe, Arizona 85287, USA;

    Department of Physics, Arizona State University, Tempe, Arizona 85287, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号