...
首页> 外文期刊>Journal of Applied Physics >Enhanced dielectric breakdown performances of propylene carbonate modified by nano-particles under microsecond pulses
【24h】

Enhanced dielectric breakdown performances of propylene carbonate modified by nano-particles under microsecond pulses

机译:微秒脉冲下纳米粒子修饰的碳酸亚丙酯的增强的介电击穿性能

获取原文
获取原文并翻译 | 示例

摘要

Propylene carbonate shows appealing prospects as an energy storage medium in the compact pulsed power sources because of its large permittivity, high dielectric strength, and broad operating temperature range. In this paper, TiO_2 nano-particles coated with γ-aminopropyltriethoxylsilane coupling agent are homogeneously dispersed into propylene carbonate and these nano-fluids (NFs) exhibit substantially larger breakdown voltages than those of pure propylene carbonate. It is proposed that interfaces between nano-fillers and propylene carbonate matrix may provide myriad trap sites for charge carriers. The charge carriers can be easily captured at the interfaces between NFs and the electrode, resulting in an increased barrier height and suppressed charge carriers injection, and in the bulk of NFs, the charge carriers' mean free path can be greatly shortened by the scattering effect. As a result, in order for charge carriers acquiring enough energy to generate a region of low density (the bubble) and initiate breakdown in NFs, much higher applied field is needed.
机译:碳酸丙烯酯因其介电常数大,介电强度高和工作温度范围广而在紧凑型脉冲电源中作为储能介质具有诱人的前景。在本文中,涂有γ-氨基丙基三乙氧基硅烷偶联剂的TiO_2纳米颗粒均匀地分散在碳酸亚丙酯中,这些纳米流体(NFs)的击穿电压比纯碳酸亚丙酯大得多。有人提出,纳米填料和碳酸亚丙酯基质之间的界面可以为载流子提供无数的俘获位点。可以很容易地在NFs与电极之间的界面处捕获电荷载流子,从而增加势垒高度并抑制电荷载流子注入,并且在大部分NFs中,由于散射效应,电荷载流子的平均自由程可以大大缩短。 。结果,为了使电荷载流子获取足够的能量以生成低密度区域(气泡)并引发NFs击穿,需要更高的应用场。

著录项

  • 来源
    《Journal of Applied Physics 》 |2016年第24期| 244307.1-244307.5| 共5页
  • 作者单位

    College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;

    College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;

    College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号