...
首页> 外文期刊>Journal of Applied Physics >Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance
【24h】

Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

机译:高纵横比超导纳米线的自谐振研究

获取原文
获取原文并翻译 | 示例

摘要

We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.
机译:我们研究了超高纵横比(长/宽≈5000)超导氮化铌纳米线的微波阻抗。纳米线以紧凑的曲折几何形状制造,该几何形状与50Ω共面波导传输线的中心导体串联。在高达20 GHz的频率下测量样品的传输系数。在高频下,可以看到传输系数达到峰值。数值模拟表明,这是沿着纳米线长度的半波谐振,其中纳米线充当高阻抗,慢波传输线。这种共振为这些纳米线作为感应元件设置了频率上限。对所测得的共振进行拟合仿真可以精确确定共振频率下纳米线的复数薄层阻抗。实数部分是耗散的量度,而虚数部分则由动电感决定。我们表征了薄层电阻和薄层电感对温度和电流的依赖性,并将结果与​​无序超导体的最新理论预测进行了比较。这些结果可以帮助理解基于超导纳米线的高频设备。它们也可能导致新型超导设备的开发,例如超紧凑谐振器和慢波结构。

著录项

  • 来源
    《Journal of Applied Physics 》 |2016年第23期| 234302.1-234302.8| 共8页
  • 作者单位

    Department of Physics, University of North Florida, Jacksonville, Florida 32224, USA;

    Department of Physics, University of North Florida, Jacksonville, Florida 32224, USA;

    Department of Physics, University of North Florida, Jacksonville, Florida 32224, USA;

    Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

    Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号