...
首页> 外文期刊>Journal of Applied Physics >Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces
【24h】

Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces

机译:可伸缩的随机纹理聚合物表面中的动态超疏水行为

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Superhydrophobic (SH) surfaces, created from hydrophobic materials with micro- or nano-roughness, trap air pockets in the interstices of the roughness, leading, in fluid flow conditions, to shear-free regions with finite interfacial fluid velocity and reduced resistance to flow. Significant attention has been given to SH conditions on ordered, periodic surfaces. However, in practical terms, random surfaces are more applicable due to their relative ease of fabrication. We investigate SH behavior on a novel durable polymeric rough surface created through a scalable roll-coating process with varying micro-scale roughness through velocity and pressure drop measurements. We introduce a new method to construct the velocity profile over SH surfaces with significant roughness in microchannels. Slip length was measured as a function of differing roughness and interstitial air conditions, with roughness and air fraction parameters obtained through direct visualization. The slip length was matched to scaling laws with good agreement. Roughness at high air fractions led to a reduced pressure drop and higher velocities, demonstrating the effectiveness of the considered surface in terms of reduced resistance to flow. We conclude that the observed air fraction under flow conditions is the primary factor determining the response in fluid flow. Such behavior correlated well with the hydrophobic or superhydrophobic response, indicating significant potential for practical use in enhancing fluid flow efficiency.
机译:由具有微米级或纳米级粗糙度的疏水性材料制成的超疏水(SH)表面将气穴捕获在粗糙度的空隙中,从而在流体流动的情况下导致界面流体速度有限且流动阻力降低的无剪切区域。已经对有序的周期性表面上的SH条件给予了极大的关注。然而,实际上,由于随机表面的相对容易制造,它们更适用。我们研究了通过可扩展的辊涂工艺通过速度和压降测量产生的微尺度粗糙度变化产生的新型耐用聚合物粗糙表面上的SH行为。我们介绍了一种在微通道中具有明显粗糙度的SH表面上构造速度分布的新方法。根据不同的粗糙度和间隙空气条件测量滑移长度,并通过直接可视化获得粗糙度和空气分数参数。滑移长度符合缩放比例法,具有良好的一致性。高空气分数下的粗糙度导致减小的压降和较高的速度,从而在减小的流动阻力方面证明了所考虑的表面的有效性。我们得出结论,在流动条件下观察到的空气分数是决定流体流动响应的主要因素。这种行为与疏水或超疏水反应密切相关,表明在提高流体流动效率方面具有实际应用的巨大潜力。

著录项

  • 来源
    《Journal of Applied Physics》 |2016年第12期|125302.1-125302.8|共8页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA;

    Department of Mechanical Engineering, Soongsil University, Seoul 156-743, South Korea;

    Materials Research Center, Samsung Electronics, Suwon-si 443-803, South Korea;

    Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA;

    Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号