首页> 外文期刊>Journal of Applied Physics >Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte
【24h】

Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte

机译:混合电解质中活化垂直石墨烯纳米片增强的超电容

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Supercapacitors are becoming the workhorse for emerging energy storage applications due to their higher power density and superior cycle life compared to conventional batteries. The performance of supercapacitors depends on the electrode material, type of electrolyte, and interaction between them. Owing to the beneficial interconnected porous structure with multiple conducting channels, vertical graphene nanosheets (VGN) have proved to be leading supercapacitor electrode materials. Herein, we demonstrate a novel approach based on the combination of surface activation and a new organo-aqueous hybrid electrolyte, tetraethylammonium tetrafluoroborate in H_2SO_4, to achieve significant enhancement in supercapacitor performance of VGN. As-synthesized VGN exhibits an excellent supercapacitance of 0.64 mF/c~m2 in H_2SO_4. However, identification of a novel electrolyte for performance enhancement is the subject of current research. The present manuscript demonstrates the potential of the hybrid electrolyte in enhancing the areal capacitance (1.99 mF/cm~2) with excellent retention (only 5.4% loss after 5000 cycles) and Coulombic efficiency (93.1%). In addition, a five-fold enhancement in the capacitance of VGNs (0.64 to 3.31 mF/cm~2) with a reduced internal resistance is achieved by the combination of KOH activation and the hybrid electrolyte.
机译:与传统电池相比,超级电容器具有更高的功率密度和出色的循环寿命,它们正在成为新兴能源存储应用的主力军。超级电容器的性能取决于电极材料,电解质的类型以及它们之间的相互作用。由于具有多个导电通道的有益的互连多孔结构,垂直石墨烯纳米片(VGN)已被证明是领先的超级电容器电极材料。本文中,我们展示了一种基于表面活化和新型有机-水混合电解质H_2SO_4中的四氟硼酸四乙铵的组合的新方法,以实现VGN超级电容器性能的显着提高。合成后的VGN在H_2SO_4中表现出极好的0.64 mF / c〜m2的超电容。然而,鉴定用于性能增强的新型电解质是当前研究的主题。本手稿证明了混合电解质在增强面积电容(1.99 mF / cm〜2)方面的潜力,具有出色的保持力(5000次循环后仅损失5.4%)和库仑效率(93.1%)。此外,通过KOH活化和混合电解质的组合,VGNs的电容增加了五倍(0.64至3.31 mF / cm〜2),内部电阻降低了。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第21期|214902.1-214902.9|共9页
  • 作者单位

    Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India;

    Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India;

    Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India;

    Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India;

    Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India;

    Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号