首页> 外文期刊>Journal of Applied Physics >Reduction of thermal conductivity in Y_xSb_(2-) _xTe_3 for phase change memory
【24h】

Reduction of thermal conductivity in Y_xSb_(2-) _xTe_3 for phase change memory

机译:减少相变存储器的Y_xSb_(2-)_xTe_3的导热系数

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Thermal conductivity (κ) is one of the fundamental properties of materials for phase change memory (PCM) application, as the set/reset processes strongly depend upon heat dissipation and transport. The κ of phase change materials in both amorphous and crystalline phases should be quite small, because it determines how energy-efficient the PCM device is during programming. At a high temperature, the electronic thermal conductivity (κ_e) is always notable for semiconductors, which is still lacking for antimony telluride under doping in the literature as far as we know. In this paper, using density functional theory and Boltzmann transport equations, we report calculations of lattice thermal conductivity κ_L and electronic thermal conductivity κ_e of the yttrium doped antimony telluride. We show that the average value of thermal conductivity decreases from ∼2.5 W m~(-1)K~(-1) for Sb_2Te_3 to ∼1.5 W m~(-1)K~(-1) for Y_(0.167)Sb_(1.833)Te_3. This can be attributed to the reduced κ_L and κ_e, especially the κ_e at high temperature (near melting point). We further point out that the increased effective mass of carriers and the flat valance band edge are responsible for the decrease of κ_e. The reduced thermal conductivity is highly desirable for the decrease of heat dissipation and transport in PCM operations, which can increase the density of memory and reduce energy consumption.
机译:导热系数(κ)是相变存储(PCM)应用材料的基本属性之一,因为置位/复位过程强烈依赖于散热和传输。非晶态和晶态相变材料的κ都应该很小,因为它决定了PCM器件在编程过程中的能量效率。在高温下,半导体的电子热导率(κ_e)始终是值得注意的,据我们所知,在掺杂中,碲化锑锑仍缺乏电子热导率。在本文中,我们使用密度泛函理论和玻尔兹曼输运方程,报告了掺钇碲化锑的晶格热导率κ_L和电子热导率κ_e的计算。我们发现,热导率的平均值从Sb_2Te_3的〜2.5 W m〜(-1)K〜(-1)降低到Y_(0.167)Sb_的〜1.5 W m〜(-1)K〜(-1)。 (1.833)Te_3。这可以归因于降低的κ_L和κ_e,尤其是高温(接近熔点)下的κ_e。我们进一步指出,载流子有效质量的增加和价带的平坦边缘是κ_e减小的原因。对于减少PCM操作中的散热和传输,降低导热率是非常理想的,这可以增加存储器的密度并减少能耗。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第19期|195107.1-195107.7|共7页
  • 作者单位

    School of Materials Science and Engineering, Beihang University, Beijing, China;

    School of Materials Science and Engineering, Beihang University, Beijing, China,Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, China;

    School of Materials Science and Engineering, Beihang University, Beijing, China;

    School of Materials Science and Engineering, Beihang University, Beijing, China;

    School of Materials Science and Engineering, Beihang University, Beijing, China,Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号