首页> 外文期刊>Journal of Applied Physics >Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks
【24h】

Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

机译:人工铁磁微型磁盘中的磁涡旋成核/ an灭

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The topological nature of the magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange, energies which, drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)]_(25) (t = 1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10-300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly magnetized states in a permanent magnetic field by changing the temperature. We explored the behavior of magnetization in 1.5-μm [Py(t)/Gd(t)]_(25) (t = 1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the magnetization in these Py/Gd disks to demonstrate a unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)]_(25) microdisks, the vortex can be metastable within a certain temperature range.
机译:磁涡旋状态的拓扑性质导致在磁性微型磁盘中观察到特殊的磁化反转。有趣的是,驱动这种逆转的静磁和交换能量可以在由稀土和过渡金属组成的人造铁磁异质结构中得到有效控制。 [Py(t)/ Gd(t)] _(25)(t = 1或2 nm)超晶格在10-300 K的温度范围内显示出明显的磁化强度和交换刚度变化,以及非常小的磁各向异性。由于这些特性,通过改变温度,可以在永久磁场中将由这些人造亚铁构成的圆柱形微盘的磁化强度从涡旋状态转变为均匀磁化状态。我们探索了在1.5μm[Py(t)/ Gd(t)] _(25)(t = 1或2 nm)磁盘上在不同温度和磁场下的磁化行为,并观察到由于能垒使涡旋分开在均匀磁化状态下,涡旋形核和an没发生在不同的温度下。这导致这些Py / Gd磁盘中磁化强度的温度依赖性在狭窄的温度范围内表现出独特的磁滞行为。已发现对于[Py(2 nm)/ Gd(2 nm)] _(25)微型磁盘,涡旋在一定温度范围内可能是亚稳态的。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第8期|083903.1-083903.6|共6页
  • 作者单位

    Materials Science Division, Argonne National Laboratory, Argonne, IL, United States,Department of Physics and Astronomy, Texas AandM University, College Station, TX, United States;

    Materials Science Division, Argonne National Laboratory, Argonne, IL, United States;

    Materials Science Division, Argonne National Laboratory, Argonne, IL, United States;

    Materials Science Division, Argonne National Laboratory, Argonne, IL, United States;

    Materials Science Division, Argonne National Laboratory, Argonne, IL, United States;

    Materials Science Division, Argonne National Laboratory, Argonne, IL, United States;

    Materials Science Division, Argonne National Laboratory, Argonne, IL, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号