...
首页> 外文期刊>Journal of Applied Physics >Energy loss of terahertz electromagnetic waves by nano-sized connections in near-self-complementary metallic checkerboard patterns
【24h】

Energy loss of terahertz electromagnetic waves by nano-sized connections in near-self-complementary metallic checkerboard patterns

机译:接近互补的金属棋盘图案中的纳米尺寸连接导致太赫兹电磁波的能量损失

获取原文
获取原文并翻译 | 示例

摘要

The design of a self-complementary metallic checkerboard pattern achieves broadband, dispersion-less, and maximized absorption, concentrating in deep subwavelength resistive connections between squares, without any theoretical limitation on the energy absorbing area. Here, we experimentally and numerically investigate the electromagnetic response in the limit of extremely small connections. We show that finite conductivity and randomness in a near-self-complementary checkerboard pattern play a crucial role in producing a frequency-independent energy loss in the terahertz frequency region. Here, metals behave like an almost perfect conductor. When the checkerboard pattern approaches the perfect self-complementary pattern, the perfect conductor approximation spontaneously breaks down, owing to the finite conductivity at the nano-scale connection, leading to broadband absorption. It is also shown that the random connections between metallic squares also lead to broadband and maximized energy loss through scattering loss, similar to finite conductivity.
机译:自互补金属棋盘格图案的设计实现了宽带,无色散和最大化的吸收,集中于方格之间的深亚波长电阻连接,而对能量吸收面积没有任何理论限制。在这里,我们通过实验和数值研究在极小的连接范围内的电磁响应。我们表明,有限的电导率和随机性在接近自我互补的棋盘图案中在太赫兹频率区域中产生与频率无关的能量损耗中起着至关重要的作用。在这里,金属的行为就像是一种几乎完美的导体。当棋盘图案接近完美的自我互补图案时,由于纳米级连接处的有限电导率,完美的导体近似自发地破裂,导致宽带吸收。还显示出,金属方块之间的随机连接也会导致宽带,并通过散射损耗(类似于有限电导率)使能量损耗最大化。

著录项

  • 来源
    《Journal of Applied Physics 》 |2017年第6期| 063101.1-063101.7| 共7页
  • 作者单位

    Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, Japan,Center for Energy and Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano, Japan;

    Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, Japan;

    Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Lille 1 University, Villeneuve d'AscqCedex, France;

    Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Lille 1 University, Villeneuve d'AscqCedex, France;

    Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Lille 1 University, Villeneuve d'AscqCedex, France;

    Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Lille 1 University, Villeneuve d'AscqCedex, France;

    Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Lille 1 University, Villeneuve d'AscqCedex, France;

    Center for Energy and Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano, Japan,Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan;

    Center for Energy and Environmental Science, Shinshu University, 4-17-1 Wakasato, Nagano, Japan,Department of Physics, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, Japan;

    Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, Japan;

    Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, Japan;

    Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Lille 1 University, Villeneuve d'AscqCedex, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号