...
首页> 外文期刊>Journal of Applied Physics >Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces
【24h】

Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces

机译:(0001)GaN表面上InGaN合金异质外延生长过程中缺陷形成的分子动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We investigate the formation of extended defects during molecular-dynamics (MD) simulations of GaN and InGaN growth on (0001) and (1120) wurtzite-GaN surfaces. The simulated growths are conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN surface; we apply time-and-position-dependent boundary constraints that vary the ensemble treatments of the vapor-phase, the near-surface solid-phase, and the bulk-like regions of the growing layer. The simulations employ newly optimized Stillinger-Weber In-Ga-N-system potentials, wherein multiple binary and ternary structures are included in the underlying density-functional-theory training sets, allowing improved treatment of In-Ga-related atomic interactions. To examine the effect of growth conditions, we study a matrix of >30 different MD-growth simulations for a range of In_xGay_(1-x)N-alloy compositions (0 ≤ x ≤ 0.4) and homologous growth temperatures [0.50≤T/T_m~*(x)≤0.90], where T_m~*(x) is the simulated melting point. Growths conducted on polar (0001) GaN substrates exhibit the formation of various extended defects including stacking faults/polymorphism, associated domain boundaries, surface roughness, dislocations, and voids. In contrast, selected growths conducted on semi-polar (1120) GaN, where the wurtzite-phase stacking sequence is revealed at the surface, exhibit the formation of far fewer stacking faults. We discuss variations in the defect formation with the MD growth conditions, and we compare the resulting simulated films to existing experimental observations in InGaN/GaN. While the palette of defects observed by MD closely resembles those observed in the past experiments, further work is needed to achieve truly predictive large-scale simulations of InGaN/GaN crystal growth using MD methodologies.
机译:我们研究了在(0001)和(1120)纤锌矿-GaN表面上进行GaN和InGaN生长的分子动力学(MD)模拟过程中扩展缺陷的形成。通过向固定的GaN表面依​​次注入将近一百万个单独的气相原子,可以非典型地大规模进行模拟生长。我们应用了与时间和位置有关的边界约束,这些约束改变了气相,近表面固相和生长层的块状区域的整体处理。该模拟采用了新近优化的Stillinger-Weber In-Ga-N系统势能,其中基础的密度泛函理论训练集中包括多个二元和三元结构,从而可以改进In-Ga相关原子相互作用的处理。为了检查生长条件的影响,我们研究了一系列In_xGay_(1-x)N合金成分(0≤x≤0.4)和同源生长温度[0.50≤T/ T_m〜*(x)≤0.90],其中T_m〜*(x)为模拟熔点。在极性(0001)GaN衬底上进行的生长显示出各种扩展缺陷的形成,包括堆叠缺陷/多态性,相关的畴边界,表面粗糙度,位错和空隙。相反,在表面显示出纤锌矿相堆叠顺序的半极性(1120)GaN上进行的选定生长显示出形成的堆叠缺陷少得多。我们讨论了缺陷形成随MD生长条件的变化,并将所得的模拟膜与InGaN / GaN中现有的实验观察结果进行了比较。尽管通过MD观察到的缺陷的分布与过去的实验非常相似,但仍需要进一步的工作以使用MD方法来实现InGaN / GaN晶体生长的真正可预测的大规模模拟。

著录项

  • 来源
    《Journal of Applied Physics》 |2017年第19期|195301.1-195301.12|共12页
  • 作者单位

    Mechanics of Materials Department, Sandia National Laboratories, Livermore, California 94550, USA,Materials Science and Engineering Department, Drexel University, Philadelphia, Pennsylvania 19104, USA;

    Mechanics of Materials Department, Sandia National Laboratories, Livermore, California 94550, USA;

    Mechanics of Materials Department, Sandia National Laboratories, Livermore, California 94550, USA;

    Advanced Materials Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA;

    Materials Science and Engineering Department, Drexel University, Philadelphia, Pennsylvania 19104, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号