首页> 外文期刊>Journal of Applied Physics >Monte-Carlo study of electronic transport in non-σ_h-symmetric two-dimensional materials: Silicene and germanene
【24h】

Monte-Carlo study of electronic transport in non-σ_h-symmetric two-dimensional materials: Silicene and germanene

机译:蒙特卡洛研究非σ_h对称二维材料中的硅和锗烯中电子传输

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The critical role of silicon and germanium in the semiconductor industry, combined with the need for extremely thin channels for scaled electronic devices, has motivated research towards monolayer silicon (silicene) and monolayer germanium (germanene). The lack of horizontal mirror (sigma(h)) symmetry in these two-dimensional crystals results in a very strong coupling-in principle diverging-of electrons to long wavelength flexural branch (ZA) phonons. For semi-metallic Dirac materials lacking sigma(h) symmetry, like silicene and germanene, this effect is further exacerbated by strong back-scattering at the Dirac cone. In order to gauge the intrinsic transport limitations of silicene and germanene, we perform low- and high-field transport studies using first-principles Monte-Carlo simulations. We take into account the full band structure and solve the electronphonon matrix elements to treat correctly the material anisotropy and wavefunction overlap-integral effects. We avoid the divergence of the ZA phonon scattering rate through the introduction of an optimistic (1 nm long wavelength) cutoff for the ZA phonons. Even with this cutoff for long-wavelength ZA phonons, essentially prohibiting intravalley scattering, we observe that intervalley ZA phonon scattering dominates the overall transport properties. We obtain relatively large electron mobilities of 701 cm(2)V(-1)s(-1) for silicene and 2327 cm(2)V(-1)s(-1) for germanene. Our results show that silicene and germanene may exhibit electronic transport properties that could surpass those of many other two-dimensional materials, if intravalley ZA phonon scattering could be suppressed. Published by AIP Publishing.
机译:硅和锗在半导体工业中的关键作用,再加上对用于规模化电子设备的极薄沟道的需求,促使人们对单层硅(硅)和单层锗(锗)进行了研究。这些二维晶体中缺乏水平反射镜(sigma(h))对称性,导致电子与长波长挠性分支(ZA)声子的耦合原理上非常强。对于缺乏sigma(h)对称性的半金属狄拉克材料(例如硅烯和锗烯),狄拉克锥的强烈反向散射会进一步加剧这种效应。为了衡量硅和锗的固有传输限制,我们使用第一性原理蒙特卡洛模拟进行了低场和高场传输研究。我们考虑了全能带结构并解决了电子声子矩阵元素,以正确处理材料各向异性和波函数重叠积分效应。我们通过为ZA声子引入一个乐观的(1 nm长波长)截止来避免ZA声子散射率的发散。即使对于长波长ZA声子有这种截止,基本上禁止了谷内散射,我们也观察到间隔间ZA声子散射在总体传输特性中占主导地位。我们获得相对较大的电子迁移率,对于硅烯为701 cm(2)V(-1)s(-1),对于锗烯为2327 cm(2)V(-1)s(-1)。我们的结果表明,如果可以抑制谷内ZA声子的散射,则硅和锗烯的电子输运性能可能会超过许多其他二维材料。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第4期|044306.1-044306.8|共8页
  • 作者单位

    Univ Texas Dallas, Dept Mat Sci & Engn, 800 W Campbell Rd, Richardson, TX 75080 USA;

    Univ Texas Dallas, Dept Mat Sci & Engn, 800 W Campbell Rd, Richardson, TX 75080 USA;

    Univ Texas Dallas, Dept Mat Sci & Engn, 800 W Campbell Rd, Richardson, TX 75080 USA;

    Taiwan Semicond Mfg Co Ltd, Corp Res, 168 Pk Ave 2, Hsinchu 30075, Taiwan;

    Univ Texas Dallas, Dept Mat Sci & Engn, 800 W Campbell Rd, Richardson, TX 75080 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号