...
首页> 外文期刊>Journal of Applied Physics >Quasi continuous wave laser sintering of Si-Ge nanoparticles for thermoelectrics
【24h】

Quasi continuous wave laser sintering of Si-Ge nanoparticles for thermoelectrics

机译:热电用Si-Ge纳米粒子的准连续波激光烧结

获取原文
获取原文并翻译 | 示例
           

摘要

Silicon-germanium is an important thermoelectric material for high temperature applications. In this study, thin films composed of SiGe nanoparticles were synthesized in a plasma reactor and sintered by a millisecond pulse width, quasi continuous wave, near infrared laser of wavelength 1070 nm. We demonstrate that laser sintered SiGe thin films have high electrical and low thermal conductivity, dependent on the surface morphology and dopant concentration. Substrate wetting of laser heating induced molten SiGe was found to play an important role in the final surface morphology of the films. Interconnected percolation structures, formed when proper substrate wetting occurs, were found to be more conductive than the balling structure that formed with insufficient wetting. Laser power was adjusted to maximize dopant reactivation while still minimizing dopant evaporation. After optimizing laser sintering process parameters, the best electrical conductivity, thermal conductivity, and Seebeck coefficient were found to be 70.42 S/cm, 0.84 W/m K, and 133.7 mu V/K, respectively. We demonstrate that laser sintered SiGe thin films have low thermal conductivity while maintaining good electrical conductivity for high temperature thermoelectric applications. Published by AIP Publishing.
机译:硅锗是用于高温应用的重要热电材料。在这项研究中,由SiGe纳米粒子组成的薄膜是在等离子体反应器中合成的,并通过毫秒级脉冲宽度,准连续波,波长为1070 nm的近红外激光进行烧结。我们证明,激光烧结的SiGe薄膜具有高电导率和低导热率,这取决于表面形态和掺杂剂浓度。发现激光加热引起的熔融SiGe的基板润湿在薄膜的最终表面形态中起重要作用。发现发生适当的基材润湿时形成的相互连接的渗透结构比润湿不充分时形成的球形结构更具导电性。调节激光功率以使掺杂剂再活化最大化,同时仍使掺杂剂蒸发最小化。在优化激光烧结工艺参数后,发现最佳电导率,导热率和塞贝克系数分别为70.42 S / cm,0.84 W / m K和133.7 mu V / K。我们证明了激光烧结SiGe薄膜具有较低的热导率,同时又为高温热电应用保持了良好的电导率。由AIP Publishing发布。

著录项

  • 来源
    《Journal of Applied Physics》 |2018年第9期|094301.1-094301.7|共7页
  • 作者单位

    Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA;

    Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA;

    Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA;

    Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA;

    Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA;

    Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号