首页> 外文期刊>Journal of Analytical Atomic Spectrometry >An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios
【24h】

An improved separation scheme for Sr through fluoride coprecipitation combined with a cation-exchange resin from geological samples with high Rb/Sr ratios for high-precision determination of Sr isotope ratios

机译:通过氟化物共沉淀的Sr改进的Sr分离方案与具有高rb / sr比率的地质样品与阳离子交换树脂合并,高精度测定SR同位素比率

获取原文
获取原文并翻译 | 示例
           

摘要

A cation-exchange resin is commonly used to separate Sr from geological and environmental samples. AG50 resin is the most traditional cation-exchange resin and has the advantages of good reusability and low cost. Although AG50 resin can meet the demands of most conventional geological samples, eliminating ~(87)Rb isobaric interference from samples with high Rb/Sr ratios (>30) is difficult during one-step separation. Separating Sr twice using AG50 resin is the general approach to Rb removal. The two-step separation method is time consuming and leads to a low Sr yield. This study aimed to improve the sample throughput and overcome the problem of ~(87)Rb isobaric interference from imperfect separation. A new separation method involving hydrofluoric acid (HF acid) coprecipitation combined with a cation-exchange resin (i.e. AG50 resin) for samples with high Rb/Sr ratios was developed. HF acid was used as a coprecipitator to remove most Rb (>90%) and recover Sr before performing AG50 column chemistry. The reliability of this method was examined using the rhyolite standard JR-2, a typical sample with a high Rb/Sr ratio (Rb/Sr - 37.36). Results in the JR-2 case showed that approximately 92% of Rb and most of the matrix elements (K, Ti, Fe, Al, Mn and Na) could be removed effectively. Moreover, Sr recovery exceeded 91% during HF acid coprecipitation. After the removal of Rb by HF acid coprecipitation, the Sr fraction with high purity was easily obtained through one-step separation using the AG50 resin column. However, we found that the removal rates of Rb and some matrix elements (such as At and Na) were strongly affected by the composition of Al-Ca-Mg in samples. Our separation method is more suitable for samples with high Rb/Sr ratios and low Ca and Mg contents. A series of silicate rock reference materials were selected to evaluate the applicability of our method, and the Sr isotopic results were consistent with previously reported values. Overall, this rapid, simple and low-cost method shows great potential for the separation of Sr from geological samples with high Rb/Sr ratios, such as alkaline feldspar granite, alkaline granite and alkaline rhyolite.
机译:阳离子交换树脂通常用于将SR与地质和环境样品分离。 AG50树脂是最传统的阳离子 - 交换树脂,具有良好可重用性和低成本的优点。虽然AG50树脂可以满足大多数常规地质样品的需求,但在一步分离期间,消除〜(87)来自具有高RB / SR比(> 30)的样品的异常干扰。使用AG50树脂分离两次SR是RB去除的一般方法。两步分离方法是耗时,导致低SR产量。本研究旨在提高样品产量,克服〜(87)rb异常干扰从不完美分离的问题。开发了一种新的分离方法,涉及氢氟酸(HF酸)共沉淀与具有高RB / SR比率的样品的阳离子交换树脂(即Ag50树脂)结合。使用HF酸作为CopRecIp键,以去除大多数Rb(> 90%)并在进行AG50柱化学之前回收SR。使用具有高RB / SR比率的典型样品(RB / SR-37.36)来检查该方法的可靠性(RB / SR-37.36)。结果在JR-2案例中显示出约92%的RB和大部分基质元素(K,Ti,Fe,Al,Mn和Na)可以有效地除去。此外,HF酸性共沉淀期间SR回收率超过91%。通过HF酸性共沉淀去除Rb后,通过使用Ag50树脂柱的一步分离容易地获得具有高纯度的Sr级分。然而,我们发现RB的去除率和一些基质元素(例如AT和NA)受样品中的Al-Ca-Mg的组成强烈影响。我们的分离方法更适合具有高RB / SR比和低Ca和Mg含量的样品。选择一系列硅酸盐岩石参考材料以评估我们方法的适用性,并且Sr同位素结果与先前报道的值一致。总的来说,这种快速,简单且低成本的方法显示出从具有高RB / SR比率的地质样品分离SR的巨大潜力,例如碱性长石花岗岩,碱性花岗岩和碱性流纹。

著录项

  • 来源
    《Journal of Analytical Atomic Spectrometry》 |2020年第5期|953-960|共8页
  • 作者单位

    Tianjin Center China Geological Survey Tianjin 300170 China Key Laboratory of Uranium Geology China Geological Survey Tianjin 300170 China;

    Tianjin Center China Geological Survey Tianjin 300170 China Key Laboratory of Uranium Geology China Geological Survey Tianjin 300170 China;

    Tianjin Center China Geological Survey Tianjin 300170 China Key Laboratory of Uranium Geology China Geological Survey Tianjin 300170 China;

    Tianjin Center China Geological Survey Tianjin 300170 China Key Laboratory of Uranium Geology China Geological Survey Tianjin 300170 China;

    Tianjin Center China Geological Survey Tianjin 300170 China Key Laboratory of Uranium Geology China Geological Survey Tianjin 300170 China;

    Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA;

    Tianjin Center China Geological Survey Tianjin 300170 China Key Laboratory of Uranium Geology China Geological Survey Tianjin 300170 China;

    Tianjin Center China Geological Survey Tianjin 300170 China Key Laboratory of Uranium Geology China Geological Survey Tianjin 300170 China;

    State Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences Beijing 100029 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号