...
首页> 外文期刊>Journal of Analytical Atomic Spectrometry >Isotope abundance ratio measurements by inductively coupled plasma-sector field mass spectrometry
【24h】

Isotope abundance ratio measurements by inductively coupled plasma-sector field mass spectrometry

机译:电感耦合等离子体扇区质谱法测量同位素丰度比

获取原文
获取原文并翻译 | 示例
           

摘要

This tutorial reviews fundamental aspects of isotope abundance ratio measurement by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). After a synopsis of the scope of isotope abundance ratio measurement and a summary introduction to the factors affecting precision and accuracy, attention is turned to noise sources. Detailed theory behind Poisson or counting statistics and plasma flicker noise components is given, since much of the observed imprecision can be attributed to these sources. Using single collector instruments, ion beams from different isotopes are sampled in rapid sequence, and so ratioing of the signals will be subject to fluctuations derived from intensity variations, i.e., flicker noise. It is demonstrated that flicker noise can, under specified circumstances, become the limiting factor for the attainable precision. Furthermore, the practice of partitioning dwell times, ostensibly to optimize precision based on isotopic abundances and assumed Poisson statistics, is shown to be flawed and actually requires accounting for flicker noise. In addition to random uncertainty, various offset factors may contribute to systematic error in measured isotope abundance ratios. Two of these, namely mass scale shift and spectral interferences are ameliorated using ICP-SFMS. The former is eliminated when operating under conditions providing flat-topped peaks, such that the minor drift in mass calibration typical of the technique becomes inconsequential and the intensity remains the same. Isotope abundance ratio measurements are subject to three further important offset factors. First is abundance sensitivity, which quantifies the extent of peak tailing to neighboring masses and can present a considerable source of offset. Second is mass bias, resulting from the fact that all sector field devices exhibit increasing sensitivity with ion mass, and various empirical methods used to correct for this effect are compared and contrasted. Third is detector dead time, which affects mass spectrometers equipped with ion counting systems. Although a well-understood phenomenon, all current methods for determining the dead time on the basis of experimentally measured isotope abundance ratios are likely to yield biased estimates. Finally, the capabilities of ICP-SFMS for the determination of isotope abundance ratios are placed in perspective by making a brief comparison with other techniques.
机译:本教程回顾了通过电感耦合等离子体扇区质谱(ICP-SFMS)进行同位素丰度比测量的基本方面。在概述了同位素丰度比测量的范围并简要介绍了影响精度和准确度的因素之后,我们将注意力转向噪声源。给出了泊松或计数统计以及等离子体闪烁噪声分量背后的详细理论,因为观察到的许多不精确性可归因于这些来源。使用单收集器仪器,可以快速顺序地采样来自不同同位素的离子束,因此信号的比例将受到强度变化(即闪烁噪声)的影响。结果表明,在特定情况下,闪烁噪声可能成为获得精度的限制因素。此外,划分停留时间的做法表面上是有缺陷的,表面上是根据同位素丰度和假定的泊松统计数据来优化精度,但这种做法存在缺陷,实际上需要考虑闪烁噪声。除了随机不确定性之外,各种补偿因子也可能导致同位素丰度比的系统误差。使用ICP-SFMS可以改善质量偏移和光谱干扰这两个方面。在提供平顶峰的条件下运行时,无需使用前者,因此该技术典型的质量校准中的微小漂移变得无关紧要,并且强度保持不变。同位素丰度比的测量还受到另外三个重要补偿因子的影响。首先是丰度灵敏度,它可以量化峰拖尾到邻近质量的程度,并且可以提供相当大的偏移量来源。第二个是质量偏差,这是由于所有扇形现场设备都显示出随离子质量而增加的灵敏度这一事实所引起的,并且比较和对比了用于校正此效应的各种经验方法。第三是检测器死区时间,这会影响配备有离子计数系统的质谱仪。尽管这是一个很好理解的现象,但目前所有基于实验测量的同位素丰度比确定停滞时间的方法都可能产生偏差估计。最后,通过与其他技术进行简要比较,将ICP-SFMS确定同位素丰度比的功能放在了视野中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号