...
首页> 外文期刊>Journal of Analytical Atomic Spectrometry >Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm
【24h】

Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm

机译:使用K-means聚类算法的单粒子电感耦合等离子体质谱法对纳米粒度进行定量解析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sensitive and accurate characterization of nanoparticle size in aqueous matrices at environmentally relevant concentrations is still challenging for current nano-analysis techniques. Single particle inductively coupled plasma mass spectrometry (splCP-MS) is an emerging method to characterize the size distribution of nanoparticles and determine their concentrations. Herein for the first time the K-means clustering algorithm is applied to signal processing of splCP-MS raw data. Compared with currently used data processing approaches, the K-means algorithm improved discrimination of particle signals from background signals and provides a sophisticated, statistically based method to quantitatively resolve different size groups contained within a nanoparticle suspension. In tests with commercial Au nanoparticles (AuNPs), spICP-MS with the K-means clustering algorithm can quantitatively discriminate secondary "impurity-size nanoparticles," present at fractions of less than 2% by mass, from primary-size nanoparticles with the minimum resolvable size difference between the primary and secondary nanoparticles at ~20 nm. AuNP mixtures in which 80 nm particles act as the "primary size group' and 20 nm, 50 nm, or 100 nm particles act as the "impurity size group" were analyzed by splCP-MS, which reliably measured percentages of secondary impurity-size nanoparticles that are consistent with the expected experimentally determined values. Compared with dynamic light scattering (DLS), splCP-MS has remarkably better particle size resolution capability. We also demonstrated the size measurement advantage of splCP-MS over DLS for commercial CeO_2 nanoparticles that are commonly used in the semiconductor industry, where quality control of the nanoparticle size distribution is critical for the wafer polishing process.
机译:对于当前的纳米分析技术而言,在环境相关浓度下对水性基质中的纳米颗粒尺寸进行灵敏而准确的表征仍然是一项挑战。单颗粒电感耦合等离子体质谱法(splCP-MS)是一种新兴的表征纳米颗粒尺寸分布并确定其浓度的方法。本文首次将K-means聚类算法应用于splCP-MS原始数据的信号处理。与当前使用的数据处理方法相比,K-means算法改善了对粒子信号与背景信号的区分,并提供了一种复杂的,基于统计的方法来定量解析纳米粒子悬浮液中包含的不同大小的基团。在使用商业金纳米颗粒(AuNPs)进行的测试中,采用k-means聚类算法的spICP-MS可以定量地将次级“杂质尺寸纳米颗粒”与原始尺寸的纳米颗粒(质量分数小于2%)进行区分初级和次级纳米粒子在〜20 nm处可分辨的尺寸差异。通过splCP-MS分析了其中80 nm颗粒充当“主要尺寸组”而20 nm,50 nm或100 nm颗粒充当“杂质尺寸组”的AuNP混合物,该混合物可靠地测量了次要杂质尺寸的百分比与动态光散射(DLS)相比,splCP-MS具有更好的粒径分辨率,我们还证明了splCP-MS优于DLS的商业CeO_2纳米颗粒的尺寸测量优势通常用于半导体行业,在该行业中,纳米粒度分布的质量控制对于晶圆抛光工艺至关重要。

著录项

  • 来源
    《Journal of Analytical Atomic Spectrometry》 |2014年第9期|1630-1639|共10页
  • 作者单位

    School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-5306, USA;

    School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-5306, USA;

    Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, USA;

    SenSIP Centers, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA;

    SenSIP Centers, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA;

    Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA;

    School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-5306, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号