首页> 外文期刊>Journal of Analytical & Applied Pyrolysis >Coupling of thermal analysis with quadrupole mass spectrometry and isotope ratio mass spectrometry for simultaneous determination of evolved gases and their carbon isotopic composition
【24h】

Coupling of thermal analysis with quadrupole mass spectrometry and isotope ratio mass spectrometry for simultaneous determination of evolved gases and their carbon isotopic composition

机译:热分析与四极质谱和同位素比率质谱联用,可同时测定逸出气体及其碳同位素组成

获取原文
获取原文并翻译 | 示例
       

摘要

By coupling an isotope ratio mass spectrometer (IRMS) and a quadrupole mass spectrometer (QMS) to a thermal analysis system, we have been able to continuously measure δ~(13)C and identify the evolved gases during the thermal decomposition of a range of lignocellulosic materials derived from soils and/or plant tissue. Here we describe the application of this approach to characterise wheat straw during fungal degradation by the oyster mushroom Pleurotus ostreatus. For samples of straw collected over 63 days, TG-DSC showed progressively decreasing contributions of cellulose (300-350℃) and lignin (400-450℃) with concomitant increases in the extents of aromatisation and polycondensation (450-500℃). TG-DSC-QMS analysis showed changes with time in the evolution of different C and N species. H_2O and CO_2 were the dominant evolved gases observed during the combustion of undegraded and fungally decomposed wheat straw. The relative ion intensities of the gas species NO (m/z 30) and CO_2 (m/z 44) observed at 350℃ increased at 530℃ with increasing wheat straw decomposition. This suggests that fungal degradation results in increasing proportions of C and N incorporated within recalcitrant structures. IRMS analysis showed that fungal decomposition of wheat straw involves homogenization of an initially heterogeneous δ~(13)C signal with increasing extent of fungal decay. Undegraded wheat straw has two components: cellulosic material with δ~(13)C of —23.8 per thousand and lignin with δ~(13)C of —26.1per thousand. After 9 weeks fungal degradation, δ~(13)C values converged to give -21.3 ± 0.8per thousand. This is consistent with preferential loss during degradation of lignin that is depleted in ~(13)C compared to cellulose, and accumulation of ~(13)C-rich components within the degraded straw.
机译:通过将同位素比质谱仪(IRMS)和四极质谱仪(QMS)耦合到热分析系统,我们已经能够连续测量δ〜(13)C并识别在一定温度范围内的热分解过程中产生的气体。源自土壤和/或植物组织的木质纤维素材料。在这里,我们描述了该方法在牡蛎蘑菇平菇侧耳真菌降解过程中表征小麦秸秆的应用。对于63天以上收集的秸秆样品,TG-DSC显示纤维素(300-350℃)和木质素(400-450℃)的贡献逐渐降低,同时芳香化和缩聚(450-500℃)的程度也随之增加。 TG-DSC-QMS分析显示不同C和N物种的进化随时间变化。 H_2O和CO_2是未降解和真菌分解的麦草燃烧过程中观察到的主要逸出气体。随着麦草分解的增加,在350℃下观察到的气体物种NO(m / z 30)和CO_2(m / z 44)的相对离子强度在530℃时增加。这表明真菌降解导致顽固结构中掺入的C和N比例增加。 IRMS分析表明,随着秸秆真菌降解程度的增加,小麦秸秆的真菌分解涉及均质的δ〜(13)C信号的均质化。未降解的麦草具有两个成分:δ〜(13)C为千分之23.8的纤维素材料和δ〜(13)C为千分之26.1的木质素。真菌降解9周后,δ〜(13)C值收敛为-21.3±0.8 /千。这与木质素降解过程中的优先损失(与纤维素相比,其在〜(13)C中被消耗掉)以及降解秸秆中富含〜(13)C的组分的积累相一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号