首页> 外文期刊>American Chemical Society >Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO2(110)
【24h】

Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO2(110)

机译:RuO2(110)上水电氧化成氧气的机理和塔菲线

获取原文
获取原文并翻译 | 示例
           

摘要

How to efficiently oxidize H2O to O2 (H2O → 1/2O2 + 2H+ + 2e−) is a great challenge for electrochemical/photo water splitting owing to the high overpotential and catalyst corrosion. Here extensive periodic first-principles calculations integrated with modified-Poisson−Boltzmann electrostatics are utilized to reveal the physical origin of the high overpotential of the electrocatalytic oxygen evolution reaction (OER) on RuO2(110). By determining the surface phase diagram, exploring the possible reaction channels, and computing the Tafel lines, we are able to elucidate some long-standing puzzles on the OER kinetics from the atomic level. We show that OER occurs directly on an O-terminated surface phase above 1.58 V vs NHE, but indirectly on a OH/O mixed phase below 1.58 V by converting first the OH/O mixed phase to the O-terminated phase locally. The rate-determining step of OER involves an unusual water oxidation reaction following a Eley−Rideal-like mechanism, where a water molecule from solution breaks its OH bond over surface Os with concurrent new O—OH bond formation. The free energy barrier is 0.74 eV at 1.58 V, and it decreases linearly with the increase of potential above 1.58 V (a slope of 0.56). In contrast, the traditionally regarded surface oxygen coupling reaction with a Langmuir−Hinshelwood mechanism is energetically less favored and its barrier is weakly affected by the potential. Fundamentally, we show that the empirical linear barrierpotential relation is caused by the linear structural response of the solvated transition state to the change of potential. Finally, the general strategy for finding better OER anode is also presented.
机译:如何有效地将H 2 O氧化为O 2 (H 2 O→1 / 2O 2 + 2H < (sup> + + 2e − )由于高电势和催化剂腐蚀,对电化学/光水分解是一个巨大的挑战。在这里,广泛的周期性第一性原理与改进的泊松-玻尔兹曼静电积分相结合,揭示了RuO 2 (110)上电催化氧释放反应(OER)高超电势的物理成因。通过确定表面相图,探索可能的反应通道并计算Tafel线,我们能够从原子水平上阐明OER动力学上的一些长期难题。我们显示OER直接发生在相对于NHE高于1.58 V的O端表面相上,而间接发生在低于1.58 V的OH / O混合相上,这是通过首先将OH / O混合相局部转化为O端相来实现的。 OER的速率确定步骤涉及遵循Eley-Rideal式机理的异常水氧化反应,其中溶液中的水分子在表面Os上破坏其OH键,同时形成新的O-OH键。自由能垒在1.58 V时为0.74 eV,并且随着电位在1.58 V以上(斜率0.56)的增加而线性减小。相比之下,传统上认为具有Langmuir-Hinshelwood机理的表面氧偶合反应在能量上较不受欢迎,并且其势垒对势垒的影响很小。从根本上讲,我们表明经验线性势垒势关系是由溶剂化过渡态对势能变化的线性结构响应引起的。最后,还介绍了寻找更好的OER阳极的一般策略。

著录项

  • 来源
    《American Chemical Society》 |2010年第51期|p.18214-18222|共9页
  • 作者

    Ya-Hui Fang and Zhi-Pan Liu;

  • 作者单位

    Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Key Laboratory of Computational Physical Science (Ministry of Education), Fudan University, Shanghai 200433, People’s Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号