首页> 外文期刊>American Chemical Society >Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion
【24h】

Peroxynitrite Mediates Active Site Tyrosine Nitration in Manganese Superoxide Dismutase. Evidence of a Role for the Carbonate Radical Anion

机译:过氧亚硝酸盐介导锰超氧化物歧化酶中的活​​性位点酪氨酸硝化。碳酸根阴离子的作用的证据

获取原文
获取原文并翻译 | 示例
       

摘要

Protein tyrosine nitration has been observed in a variety of human diseases associated with oxidative stress, such as inflammatory, neurodegenerative, and cardiovascular conditions. However, the pathways leading to nitration of tyrosine residues are still unclear. Recent studies have shown that peroxynitrite (PN), produced by the reaction of superoxide and nitric oxide, can lead to protein nitration and inactivation. Tyrosine nitration may also be mediated by nitrogen dioxide produced by the oxidation of nitrite by peroxidases. Manganese superoxide dismutase (MnSOD), which plays a critical role in cellular defense against oxidative stress by decomposing superoxide within mitochondria, is nitrated and inactivated under pathological conditions. In this study, MnSOD is shown to catalyze PN-mediated self-nitration. Direct, spectroscopic observation of the kinetics of PN decay and nitrotyrosine formation (kcat = 9.3 × 102 M−1 s−1) indicates that the mechanism involves redox cycling between Mn2+ and Mn3+, similar to that observed with superoxide. Distinctive patterns of tyrosine nitration within MnSOD by various reagents were revealed and quantified by MS/MS analysis of MnSOD trypsin digest peptides. These analyses showed that three of the seven tyrosine residues of MnSOD (Tyr34, Tyr9, and Tyr11) were the most susceptible to nitration and that the relative amounts of nitration of these residues varied widely depending upon the nature of the nitrating agent. Notably, nitration mediated by PN, in both the presence and absence of CO2, resulted in nitration of the active site tyrosine, Tyr34, while nitration by freely diffusing nitrogen dioxide led to surface nitration at Tyr9 and Tyr11. Flux analysis of the nitration of Tyr34 by PN−CO2 showed that the nitration rate coincided with the kinetics of the reaction of PN with CO2. These kinetics and the 20-fold increase in the efficiency of tyrosine nitration in the presence of CO2 suggest a specific role for the carbonate radical anion (•CO3−) in MnSOD nitration by PN. We also observed that the nitration of Tyr34 caused inactivation of the enzyme, while nitration of Tyr9 and Tyr11 did not interfere with the superoxide dismutase activity. The loss of MnSOD activity upon Tyr34 nitration implies that the responsible reagent in vivo is peroxynitrite, acting either directly or through the action of •CO3−.
机译:在与氧化应激有关的多种人类疾病中,如炎症,神经退行性疾病和心血管疾病,已观察到蛋白质酪氨酸硝化作用。然而,导致酪氨酸残基硝化的途径仍不清楚。最近的研究表明,由超氧化物和一氧化氮反应产生的过氧亚硝酸盐(PN)可能导致蛋白质硝化和失活。酪氨酸硝化还可以由过氧化物酶将亚硝酸盐氧化而产生的二氧化氮介导。锰超氧化物歧化酶(MnSOD)通过在线粒体中分解超氧化物而在细胞抵抗氧化应激的防御中发挥关键作用,在病理条件下被硝酸化并失活。在这项研究中,MnSOD被证明可催化PN介导的自硝化。 PN衰减和硝基酪氨酸形成动力学的直接光谱观察(k cat = 9.3×10 2 M -1 s - 1 )表明该机制涉及Mn 2 + 和Mn 3 + 之间的氧化还原循环,与超氧化物相似。通过MnSOD胰蛋白酶消化肽的MS / MS分析,揭示并定量了各种试剂在MnSOD内酪氨酸硝化的独特模式。这些分析表明,MnSOD的七个酪氨酸残基中的三个残基(Tyr34,Tyr9和Tyr11)最易硝化,这些残基的硝化相对量随硝化剂的性质而变化很大。值得注意的是,在存在和不存在CO 2 的情况下,PN介导的硝化作用都会导致活性位点酪氨酸Tyr34的硝化,而通过自由扩散的二氧化氮进行的硝化作用会导致Tyr9和Tyr11的表面硝化。 。 PN-CO 2 对Tyr34的硝化作用的通量分析表明,硝化速率与PN与CO 2 的反应动力学相吻合。这些动力学以及在CO 2 存在下酪氨酸硝化效率提高20倍表明,碳酸盐自由基阴离子(•CO 3 -)在PN中硝化MnSOD。我们还观察到,Tyr34的硝化作用会导致酶的失活,而Tyr9和Tyr11的硝化作用不会干扰超氧化物歧化酶的活性。 Tyr34硝化后MnSOD活性的丧失意味着体内负责的试剂是过氧亚硝酸盐,直接或通过•CO 3 -作用。

著录项

  • 来源
    《American Chemical Society》 |2010年第48期|p.17174-17185|共12页
  • 作者单位

    Department of Chemistry, Princeton University, Princeton New Jersey 08544, United States, and Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号