首页> 外文期刊>Journal of the American Chemical Society >Nitric Oxide Synthase Stabilizes the Tetrahydrobiopterin Cofactor Radical by Controlling Its Protonation State
【24h】

Nitric Oxide Synthase Stabilizes the Tetrahydrobiopterin Cofactor Radical by Controlling Its Protonation State

机译:一氧化氮合酶通过控制其质子化状态稳定四氢生物蝶呤辅因子自由基

获取原文
获取原文并翻译 | 示例
       

摘要

Nitric oxide synthase (NOS), a homodimeric enzyme with a flavin reductase domain and a P450-type heme-containing oxygenase domain, catalyzes the formation of NO from l-arginine, NADPH, and O2 in a two-step reaction sequence. In the first step, a tetrahydrobiopterin (H4B) cofactor bound near one of the heme propionate groups acts as an electron donor to the P450-type heme active site, yielding a one-electron oxidized radical that is subsequently re-reduced. In solution, H4B undergoes two-electron oxidation, showing that the enzyme significantly alters the proton- and electron-transfer properties of the cofactor. Multifrequency EPR and ENDOR spectroscopy were used to determine magnetic parameters, and from them the (de)protonation state of the H4B radical in the oxygenase domain dimer of inducible NO synthase that was trapped by rapid freeze quench. From 9.5 and 330−416 GHz EPR and from 34 GHz 1H ENDOR spectroscopy, the g tensor of the radical and the hyperfine tensors of several N and H nuclei in the radical were obtained. Density functional theory calculations at the PBE0/EPR-II level for H4B radical models predict different spin density distributions and g and hyperfine tensors for different protonation states. Comparison of the predicted and experimental values leads to the conclusion that the radical is cationic H4B•+, suggesting that NOS stabilizes this protonated form to utilize the cofactor in a unique dual one-electron redox role, where it can deliver an electron to the active site for reductive oxygen activation and also remove an electron from the active site to generate NO and not NO−. The protein environment also prevents further oxidation and subsequent loss of function of the cofactor, thus enabling the enzyme to perform the unusual catalytic one-electron chemistry.
机译:一氧化氮合酶(NOS)是具有黄素还原酶结构域和P450型含血红素的加氧酶结构域的同型二聚酶,它催化L-精氨酸,NADPH和O 2 中NO的形成。两步反应顺序。在第一步中,结合在一个血红素丙酸酯基团附近的四氢生物蝶呤(H 4 B)辅因子充当P450型血红素活性位点的电子供体,产生一个单电子氧化自由基,随后减少。在溶液中,H 4 B经历两电子氧化,表明该酶显着改变了辅因子的质子和电子转移性质。使用多频EPR和ENDOR光谱确定磁参数,并从中确定快速冷冻猝灭捕获的诱导型NO合酶加氧酶结构域二聚体中H 4 B自由基的(去)质子化状态。从9.5和330−416 GHz EPR以及从34 GHz 1 H ENDOR光谱中,获得了自由基的g张量和自由基中几个N和H核的超精细张量。 H 4 自由基模型在PBE0 / EPR-II级别的密度泛函理论计算可预测不同的自旋密度分布以及不同质子化态的g和超精细张量。通过比较预测值和实验值得出的结论是,自由基是阳离子H 4 B •+ ,这表明NOS可以稳定这种质子化形式,从而以独特的方式利用辅因子双重单电子氧化还原作用,它可以将电子传递到活性位以进行还原性氧活化,还可以从活性位去除电子以生成NO,而不生成NO -。蛋白质环境还可以防止进一步的氧化以及随后辅因子功能的丧失,从而使酶能够执行不同寻常的催化单电子化学反应。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第33期|p.11812-11823|共12页
  • 作者

    Stefan Stoll;

  • 作者单位

    Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, Departments of Chemistry and Molecular and Cellular Biology, QB3 Institute, and Division of Physical Biosciences, Lawrence Berkeley National Laboratory,;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号