首页> 外文期刊>Journal of the American Chemical Society >Hydrogen Molecules inside Fullerene C70: Quantum Dynamics, Energetics, Maximum Occupancy, And Comparison with C60
【24h】

Hydrogen Molecules inside Fullerene C70: Quantum Dynamics, Energetics, Maximum Occupancy, And Comparison with C60

机译:富勒烯C70中的氢分子:量子动力学,能量学,最大占有率以及与C60的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Recent synthesis of the endohedral complexes of C70 and its open-cage derivative with one and two H2 molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H2 molecules in C70 and C60, which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H2 (p-H2) molecules encapsulated in C70 and for one and two p-H2 molecules inside C60. These calculations provide a quantitative description of the ground-state properties, energetics, and the translation−rotation (T−R) zero-point energies (ZPEs) of the nanoconfined p-H2 molecules and of the spatial distribution of two p-H2 molecules in the cavity of C70. The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H2 molecules in C70 but has a high positive value when the third H2 is added, implying that at most two H2 molecules can be stabilized inside C70. By the same criterion, in the case of C60, only the endohedral complex with one H2 molecule is energetically stable. Our results are consistent with the fact that recently both (H2)n@C70 (n = 1, 2) and H2@C60 were prepared, but not (H2)3@C70 or (H2)2@C60. The ZPE of the coupled T−R motions, from the DMC calculations, grows rapidly with the number of caged p-H2 molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H2@C70 and 52% for (p-H2)2@C70. Consequently, the T−R ZPE represents a major component of the energetics of the encapsulated H2 molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H2)3@C70 is destabilized and increases by 66% the energetic destabilization of (p-H2)2@C60. For these reasons, the T−R ZPE has to be calculated accurately and taken into account for reliable theoretical predictions regarding the stability of the endohedral fullerene complexes with hydrogen molecules and their maximum H2 content.
机译:最近合成的C 70 和它的带有一个和两个H 2 分子的笼型衍生物的内衬复合物为实验和理论研究独特的动力学开辟了道路,具有多个氢分子的系统的光谱学和其他性质都被限制在纳米级腔内。在此,我们对C 70 和C 60 中H 2 分子的平移和旋转耦合运动的动力学进行了严格的理论研究。是高度量子力学的。对包裹在C 70 中的多达三个对-H 2 (pH 2 )分子进行了扩散Monte Carlo(DMC)计算,对一个分子进行了计算C 60 中有两个pH 2 分子。这些计算定量描述了纳米约束pH 2 分子的基态性质,高能学以及平移-旋转(TR)零点能量(ZPE)和空间分布C 70 腔中的两个pH 2 分子的分布。对于C 70 中的一个和两个H 2 分子,分子间势能表面(PES)上的全局最小值的能量为负,而当第三添加了H 2 ,这意味着在C 70 内部最多可以稳定两个H 2 分子。按照相同的标准,在C 60 的情况下,只有具有一个H 2 分子的内膜复合物在能量上是稳定的。我们的结果与最近(H 2 n @C 70 (n = 1,2)和H 2 @C 60 ,但没有准备(H 2 3 @C 70 或(H 2 2 @C 60 。根据DMC计算,耦合的T-R运动的ZPE随着笼中pH 2 分子的数量而迅速增长,并且是分子间PES孔深度的很大一部分,在PES孔深度中为11%。 2 @C 70 的情况和(pH 2 2 @C 70的52% 。因此,TR ZPE代表了被包封的H 2 分子的能量学的主要成分。 ZPE的加入使(pH 2 3 @C 70 不稳定的能量几乎翻倍,并且使能量不稳定增加了66% (pH 2 2 @C 60 的数量。由于这些原因,必须准确计算T-R ZPE并考虑到可靠的理论预测,这些预测涉及具有氢分子的内嵌富勒烯配合物的稳定性及其最大H <2> 含量。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第28期|p.9826-9832|共7页
  • 作者

    Francesco Sebastianelli;

  • 作者单位

    State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China, Department of Chemistry, New York University, New York, New York 10003, Dep;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号