首页> 外文期刊>Journal of the American Chemical Society >Static and Dynamic Electrowetting of an Ionic Liquid in a Solid/Liquid/Liquid System
【24h】

Static and Dynamic Electrowetting of an Ionic Liquid in a Solid/Liquid/Liquid System

机译:固体/液体/液体系统中离子液体的静态和动态电润湿

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract: A droplet of an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, bmim.BF4) is immersednin an immiscible liquid (n-hexadecane) and electrowetted on a flat Teflon AF1600-coated ITO electrode.nThe static contact angle decreases significantly when voltage is applied between the droplet and thenelectrode: from 145° down to 50° (with DC voltage) and 15° (with AC voltage). The electrowetting curvesn(contact angle versus voltage) are similar to the ones obtained in other solid/liquid/vapor and solid/liquidliquid systems: symmetric with respect to zero voltage and correctly described by Young-Lippmann equationnbelow saturation. The reversibility is excellent and contact angle hysteresis is minimal (∼2°). The step sizenused in applying the DC voltage and the polarity of the voltage are unimportant. The saturation contactnangle cannot be predicted with the simple zero-interfacial tension theory. Spreading (after applying a DCnvoltage) and retraction (after switching off the voltage) of the droplet is monitored. The base area of thendroplet varies exponentially during wetting (exponential saturation) and dewetting (exponential decay). Thencharacteristic time is 20 ms for spreading and 35 ms for retraction (such asymmetry is not observed withnwater glycerol mixtures of a similar viscosity). The spreading kinetics (dynamic contact angle versus contactnline speed) can be described by the hydrodynamic model (Voinov’s equation) for small contact angles andnby the molecular-kinetic model (Blake’s equation) for large contact angles. The role of viscous and molecularndissipation follows the scheme outlined by Brochard-Wyart and de Gennes.
机译:摘要:将一滴离子液体(1-氟-3-甲基咪唑鎓四氟硼酸酯,bmim.BF4)浸入不混溶的液体(正十六烷)中,并用电润湿法将其涂在涂有Te fl on AF1600涂层的ITO电极上。n静态接触角显着减小当在液滴和电极之间施加电压时:从145°降至50°(使用DC电压)和15°(使用AC电压)。电润湿曲线n(接触角与电压的关系)类似于在其他固体/液体/蒸气和固体/液体/ n液体系统中获得的曲线:相对于零电压对称,并且由饱和以下的Young-Lippmann方程正确描述。可逆性极好,接触角滞后极小(〜2°)。施加直流电压的步长和电压的极性无关紧要。简单的零界面张力理论无法预测饱和接触角。监控液滴的散布(在施加DCn电压之后)和缩回(在关闭电压之后)。在润湿(指数饱和)和反润湿(指数衰减)期间,微滴的基面积呈指数变化。然后,特征时间为展开时间为20毫秒,收缩时间为35毫秒(对于具有类似粘度的水甘油混合物,未观察到这种不对称性)。扩散动力学(动态接触角与接触线速度的关系)可以用小接触角的流体动力学模型(Voinov方程)描述,而用大接触角的分子动力学模型(Blake方程)描述。粘性和分子粘连的作用遵循Brochard-Wyart和de Gennes概述的方案。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第24期|p.8301-8308|共8页
  • 作者单位

    Ian Wark Research Institute, ARC Special Research Centre for Particle and Material Interfaces,Uni ersity of South Australia, Mawson Lakes, SA 5095, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:50:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号