首页> 外文期刊>Journal of the American Ceramic Society >Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials
【24h】

Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials

机译:多功能细胞结构优化设计的协议:从高超音速到微结构材料

获取原文
获取原文并翻译 | 示例
       

摘要

Cellular materials with periodic architectures have been exten-sively investigated over the past decade for their potential to provide multifunctional solutions for a variety of applications, including lightweight thermo-structural panels, blast resistant structures, and high-authority morphing components. Stiffer and stronger than stochastic foams, periodic cellular materials lend themselves well to geometry optimization, enabling a high degree of tailorability and superior performance benefits. This article reviews a commonly established optimal design protocol, extensively adopted at the macro-scale for both single and multifunctional structures. Two prototypical examples are discussed: the design of strong and lightweight sandwich beams subject to mechanical loads and the combined material/ geometry optimization of actively cooled combustors for hyper-sonic vehicles. With this body of literature in mind, we present a motivation for the development of micro-architected materials, namely periodic multiscale cellular materials with overall macro-scopic dimensions yet with features (such as the unit cell or subunit cell constituents) at the micro- or nano-scale. We review a suite of viable manufacturing approaches and discuss the need for advanced experimental tools, numerical models, and optimization strategies. In analyzing challenges and oppor-tunities, we conclude that the technology is approaching matu-rity for the development of micro-architected materials with unprecedented combinations of properties (e.g., specific stiffness and strength), with tremendous potential impact on a number of fields.
机译:在过去的十年中,具有周期性架构的蜂窝材料已经得到了广泛的研究,因为它们具有为多种应用提供多功能解决方案的潜力,包括轻型热结构面板,抗爆结构和高权威变形组件。周期性泡沫材料比随机泡沫更坚硬,更坚固,非常适合几何形状优化,从而实现高度可定制性和卓越的性能优势。本文回顾了通常建立的最佳设计协议,该协议在宏观上被广泛用于单功能结构和多功能结构。讨论了两个典型示例:承受机械载荷的强而轻的夹层梁的设计,以及用于超音速车辆的主动冷却燃烧器的材料/几何形状组合优化。考虑到这些文献,我们提出了开发微结构材料的动机,即具有整体宏观尺寸但在微结构上具有特征(例如单位细胞或亚单位细胞成分)的周期性多尺度细胞材料。或纳米级。我们回顾了一套可行的制造方法,并讨论了对高级实验工具,数值模型和优化策略的需求。在分析挑战和机遇时,我们得出结论,该技术正接近成熟,以开发具有前所未有的特性(例如比刚度和强度)组合的微结构材料,并对许多领域产生巨大的潜在影响。

著录项

  • 来源
    《Journal of the American Ceramic Society》 |2011年第s1期|p.15-34|共20页
  • 作者单位

    Mechanical and Aerospace Engineering Department and Chemical Engineering and Materials Science Department, University of California, Irvine, California, 92697;

    HRL Laboratories, Malibu, California, 90265;

    Materials Science Department, California Institute of Technology, Pasadena, California, 91125;

    HRL Laboratories, Malibu, California, 90265;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:39:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号