首页> 外文期刊>Journal of Aircraft >FENSAP-ICE-Unsteady: Unified In-Flight Icing Simulation Methodology for Aircraft Rotorcraft and Jet Engines
【24h】

FENSAP-ICE-Unsteady: Unified In-Flight Icing Simulation Methodology for Aircraft Rotorcraft and Jet Engines

机译:FENSAP-ICE-Insteady:适用于飞机旋翼飞机和喷气发动机的统一飞行中结冰仿真方法

获取原文
获取原文并翻译 | 示例
       

摘要

In-flight ice accretion, even though driven by a steady flow airstream, is an inherently unsteady phenomenon. It is, however, completely ignored in icing simulation codes (one-shot) or, at best approximated via quasi-steady modeling (multishot). The final ice shapes thus depend on the length of the total accretion time (one-shot), or of the arbitrarily prescribed time intervals (multishot), during which the impact of ice growth on both airflow and water impingement is ignored. Such a longstanding heuristic approximation is removed in this paper by coupling in time the dilute two-phase flow (air and water droplets flow) with ice accretion, and is implemented in a new code, FENSAP-ICE-Unsteady. The two-phase flow is solved using the coupled Navier-Stokes and water concentration equations, and the water film characteristics and ice shapes are obtained from laws of conservation of mass and energy within the thin film layer. To continually update the geometry of the iced surface in time, arbitrary Lagrangian-Eulerian terms are added to all governing equations to account for mesh movement in the case of stationary components. In the case of rotating/stationary interacting components, a dynamically stitched grid is used. The numerical results clearly show that unsteady modeling improves the accuracy of both rime and glaze ice shape prediction, compared with the traditional quasi-steady approach with frozen solutions. The unsteady model is shown to open the door for a unified approach to icing on fixed wings, on helicopters with blades/rotors/fuselage systems. Problems of current concern in the icing community such as the ingestion of ice crystals at high altitude become tractable with the new formulation.
机译:即使在稳定的气流的作用下,飞行中的积冰也是一种固有的不稳定现象。但是,在结冰仿真代码中(一次),或完全通过准稳态建模(多次)近似地将其完全忽略。因此,最终的冰块形状取决于总积聚时间的长度(一次)或任意规定的时间间隔(多次),在此期间,冰块生长对气流和水冲击的影响可以忽略。通过将稀薄的两相流(空气和水滴流)与积冰时间及时耦合,可以消除这种长期的启发式近似,并在新代码FENSAP-ICE-Unsteady中实现。使用耦合的Navier-Stokes和水浓度方程式求解两相流,并根据薄膜层内质量和能量守恒定律获得水膜特性和冰形。为了及时更新冰面的几何形状,在所有控制方程式中都添加了任意拉格朗日-欧拉项,以解决固定部件情况下的网格运动。在旋转/固定相互作用的组件的情况下,使用动态缝合的网格。数值结果清楚地表明,与传统的采用冻结解的准稳态方法相比,非稳态建模可以提高霜状和釉冰形状预测的准确性。所示的非稳定模型为采用叶片/旋翼/机身系统的直升机的固定翼上的结冰方法提供了统一的途径。新配方使糖衣界当前关注的问题(如在高海拔处摄取冰晶)变得易于处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号