...
首页> 外文期刊>Journal of Aircraft >Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration
【24h】

Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration

机译:运输飞机配置的多点高保真航空结构优化

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents multipoint high-fidelity aerostructural optimizations of a long-range wide-body transonic transport aircraft configuration. The aerostructural analysis employs Euler computational fluid dynamics with a 2-million-cell mesh and a structural finite-element model with 300,000 degrees of freedom. The coupled adjoint sensitivity method is used to efficiently compute gradients, enabling the use of gradient-based optimization with respect to hundreds of aerodynamic shape and structural sizing variables. The NASA Common Research Model is used as the baseline configuration, together with a wing box structure that was designed for this study. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multipoint formulation with five cruise conditions and two maneuver conditions. Each of the optimization problems have 476 design variables, including wing planform, airfoil shape, and structural thickness variables. Optimized results are obtained within 36 h of wall time using 435 processors. The resulting optimal configurations are discussed and analyzed for the aerostructural tradeoffs resulting from each objective. The takeoff gross weight minimization results in a 4.2 % reduction in takeoff gross weight with a 6.6 % fuel burn reduction, whereas the fuel-burn optimization resulted in an 11.2% fuel burn reduction with no significant change in the takeoff gross weight.
机译:本文介绍了远程宽体跨音速运输飞机配置的多点高保真航空结构优化。航空结构分析采用具有200万单元网格的Euler计算流体动力学和具有30万自由度的结构有限元模型。耦合伴随灵敏度方法用于有效地计算坡度,从而可以针对数百种空气动力学形状和结构尺寸变量使用基于坡度的优化。 NASA通用研究模型与本研究设计的机翼盒结构一起用作基线配置。解决了两个设计优化问题:一个使起飞总重量最小,另一个使燃料燃烧最小。每个优化都使用具有五个巡航条件和两个操纵条件的多点公式。每个优化问题都有476个设计变量,包括机翼平面形状,机翼形状和结构厚度变量。使用435个处理器,可以在36小时内获得最佳结果。讨论并分析了由此产生的最佳配置,以分析每个目标产生的航空结构。最小化起飞总重量可使起飞总重量减少4.2%,减少6.6%的燃油燃烧,而优化燃油燃烧可减少11.2%的燃油燃烧,且起飞总重量无明显变化。

著录项

  • 来源
    《Journal of Aircraft》 |2014年第1期|144-160|共17页
  • 作者单位

    University of Michigan, Ann Arbor, Michigan 48109,Department of Aerospace Engineering;

    University of Michigan, Ann Arbor, Michigan 48109,Department of Aerospace Engineering. Associate;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号