首页> 外文期刊>Journal of Aircraft >Ice Accretion on Helicopter Fuselage Considering Rotor-Wake Effects
【24h】

Ice Accretion on Helicopter Fuselage Considering Rotor-Wake Effects

机译:考虑旋翼-尾流效应的直升机机身结冰

获取原文
获取原文并翻译 | 示例
       

摘要

To accurately predict the ice shape on the fuselage under rotor-wake effects, discrete modeling of individual tip vortices is essential to determine the local aerodynamic interactions between the vortex and the fuselage. To this end, the actuator surface model is developed and applied to the present study. Then, water-droplet-trajectory prediction, thermal analysis, and ice growth module are seamlessly integrated. This study aims to perform detailed analysis of the rotor downwash effects on ice that accretes on a helicopter fuselage and to determine the variation with respect to the forward flight speed. As a result of comprehensive numerical computations, the following conclusions are reached. First, the rotor inflow transforms the droplet trajectories, the location of ice accretion and the amount of ice are changed. Actually, 16.5% less ice is accumulated on the overall fuselage in the rotor-fuselage interaction case compared to the isolated fuselage case. Second, a clear-cut distinction of the icing locations on the fuselage is observed with various advance ratios. In hovering conditions, massive ice is accumulated on the tail-boom and fuselage nose region, where the tip vortices collide with fuselage. Due to the large collision area with high speed of droplets, 15.2 and 9.1% more ice is accumulated in hovering case than that of forward flight case with the advance ratio 0.075 and 0.15, respectively. However, as the forward speed grows from 0.15 to 0.2, the total mass of ice exponentially increases. In case of the advance ratio 0.2, 36% more ice is accumulated than that of the hovering case.
机译:为了在转子-尾流效应下准确预测机身上的冰块形状,对各个尖端涡旋进行离散建模对于确定涡旋与机身之间的局部空气动力学相互作用至关重要。为此,开发了执行器表面模型并将其应用于本研究。然后,将水滴轨迹预测,热分析和结冰模块无缝集成。这项研究的目的是对直升飞机机身上积聚的冰上的旋翼向下冲洗效应进行详细分析,并确定相对于向前飞行速度的变化。综合数值计算的结果,得出以下结论。首先,转子流入改变了液滴的轨迹,改变了积冰的位置和结冰的量。实际上,与隔离机身相比,在旋翼-机身相互作用情况下,整个机身上的冰积少了16.5%。其次,以各种提前比观察到了机身上结冰位置的清晰区别。在悬停条件下,大量的冰积聚在尾部动臂和机身鼻部区域,在那里尖端涡旋与机身碰撞。由于大的碰撞面积和高的液滴速度,与前进比分别为0.075和0.15的向前飞行相比,在悬停情况下积冰分别增加15.2和9.1%。但是,随着前进速度从0.15增加到0.2,冰的总质量呈指数增加。在前进比为0.2的情况下,比在悬停情况下积冰多36%。

著录项

  • 来源
    《Journal of Aircraft》 |2017年第2期|500-518|共19页
  • 作者单位

    Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151742, South Korea;

    Pusan Natl Univ, Dept Aerosp Engn, Busan 609735, South Korea;

    Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151742, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号