首页> 外文期刊>Journal of Aerospace Sciences and Technologies >COMPARATIVE STUDIES OF AERODYNAMIC DRAG USING INVISCID FLOW COMPUTATION AND NEWTONIAN METHOD AT HIGH SPEED
【24h】

COMPARATIVE STUDIES OF AERODYNAMIC DRAG USING INVISCID FLOW COMPUTATION AND NEWTONIAN METHOD AT HIGH SPEED

机译:高速气流的无粘流计算与牛顿法的比较研究。

获取原文
获取原文并翻译 | 示例
           

摘要

The flow field analysis over various reentry configurations is studied numerically by solving time-dependent compressible Euler equations. The governing fluid flow equations are discretized in spatial coordinates employing a finite volume approach, which reduces the equations to semi-discretized ordinary differential equations. Temporal integration is performed using multi-stage Runge-Kutta time stepping scheme. A local time step is used to achieve steady state solution. The numerical computation is carried out for freestream Mach number of 10.0 and angle of attack of 10.0 degree. The flow features around the blunt body are characterized by a bow shock wave, expansion wave and base flow region. The numerical scheme captures all the flow field features well. Comparisons of the flow field and surface pressure distribution results are made between different configurations of the blunt body capsules such as ARD (ESA' s Atmospheric Reentry Demonstrator), Apollo II, MUSES-C, OREX (Orbital Reentry Experiments) with and without shoulder curvature and spherically blunted cone with flare angle of 30 and 35 degree. The inviscid analysis takes into consideration centrifugal force and expansion fan at the shoulder of the reentry capsules. The effects of the capsule geometry on the flow field may be useful for optimization of the reentry capsule. The Newtonian flow assumptions are used to calculate forebody aerodynamic drag for various blunt- bodies in conjunction with the NISA software. A comparison between CFD and the Newtonian flow assumptions for various reentry modules are made, and comparison shows an agreement between them.
机译:通过求解与时间有关的可压缩Euler方程,数值研究了各种折返结构的流场分析。控制流体流方程采用有限体积方法在空间坐标中离散化,从而将方程简化为半离散常微分方程。时间积分是使用多阶段Runge-Kutta时间步进方案执行的。使用本地时间步长来实现稳态解决方案。对自由流马赫数为10.0,攻角为10.0度进行了数值计算。钝体周围的流动特征为弓形冲击波,膨胀波和基本流动区域。数值方案很好地捕获了所有流场特征。比较不同形状的钝体胶囊的流场和表面压力分布结果,例如ARD(ESA的大气折返演示器),Apollo II,MUSES-C,OREX(折返实验),有和没有肩膀曲率球形钝锥,扩口角为30度和35度。无形分析考虑了再入舱肩部的离心力和膨胀风扇。胶囊的几何形状对流场的影响对于再入胶囊的优化可能是有用的。牛顿流假设与NISA软件一起用于计算各种钝体的前体气动阻力。比较了CFD和各种折返模块的牛顿流假设,并进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号