...
首页> 外文期刊>Journal of aerospace engineering >Structure-Actuator Integrated Design of Piezo-Actuated Composite Plate Wing for Active Shape Control
【24h】

Structure-Actuator Integrated Design of Piezo-Actuated Composite Plate Wing for Active Shape Control

机译:用于主动形状控制的压电致动复合板翼的结构 - 执行器集成设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aerodynamic performance of aircraft can be improved via shape morphing of wings actuated by piezoelectric material. An integrated design approach of piezo-actuated wings was developed while simultaneously considering aeroelastic tailoring of the base wing and actuator optimization. The main purpose was to investigate how the anisotropic composite substrate and the anisotropic piezocomposite actuators affect each other in both passive and active aspects. To this end, an aeroelastic model was established using the finite element method combined with unsteady aerodynamic loads. A structural/actuator integrated design scheme was developed by taking the incremental lift change and the wing thickness as objective functions. The general genetic algorithm (GA) and improved nondominated sorting genetic algorithm II (NSGA-II) were used to solve the single-objective and multiobjective problems, respectively. The results indicate that, with a fixed thickness, control ability on lift change can be improved with lower flutter speed constraint, increased number of layers, smaller incremental angle, and increased number of actuators. The Pareto frontier for the multiobjective case, presenting better control ability, will be available with relatively larger wing thickness. The distribution of the +/- 45 degrees layers plays a key role in balancing the tradeoff between shape control ability and flutter stability. The designs of the substrate and actuators interact in both passive (mass and stiffness properties) and active (shape morphing and lift enhancement) aspects. The best solution must be obtained by considering the aeroelastic tailoring and actuator optimization in an integrated way. (C) 2021 American Society of Civil Engineers.
机译:通过压电材料驱动的翼的形状形状可以改善飞机的空气动力学性能。开发了压电致动翅膀的集成设计方法,同时考虑了基翼和致动器优化的空气弹性剪裁。主要目的是研究各向异性复合衬底和各向异性压电复合致动器如何在被动和主动方面相互影响。为此,使用有限元方法建立了空气弹性模型,与不稳定的空气动力载荷相结合。通过将增量升力变化和机翼厚度作为客观功能,开发了一种结构/执行器集成设计方案。一般遗传算法(GA)和改进的非型分选遗传算法II(NSGA-II)分别用于解决单目标和多目标问题。结果表明,通过固定厚度,可以通过较低的颤动速度约束,增加的层数,较小的增量角度和增加数量的致动器的升高变化的控制能力。对于多目标情况的帕累托前沿,呈现更好的控制能力,将具有相对较大的翼厚度。 +/- 45度层的分布在平衡形状控制能力与颤动稳定之间的折衷方面发挥着关键作用。基板和致动器的设计在被动(质量和刚度特性)中相互作用,并且有效(形状变形和提升)方面。必须通过以综合方式考虑空气弹性剪裁和执行器优化来获得最佳解决方案。 (c)2021年美国土木工程师协会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号