...
首页> 外文期刊>Journal of Biological Inorganic Chemistry >Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations
【24h】

Structural and mechanistic insights into the oxy form of tyrosinase from molecular dynamics simulations

机译:分子动力学模拟对酪氨酸酶氧化形式的结构和机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

The first, long time scale (16-ns) ligand field molecular dynamics (LFMD) simulations of the oxy form of tyrosinase are reported. The calculations use our existing type 3 copper force field for the peroxido-bridged [Cu2O2]2+ unit which is here translated from MMFF into the AMBER format together with a new charge scheme. The protein secondary and tertiary structures are not significantly altered by removing the ‘caddie’ protein, ORF378, which must be bound to tyrosinase before crystals will grow. A comprehensive principal component analysis of the Cartesian coordinates from the final 8 ns shows that the protein backbone is relatively rigid. However, the significant butterfly fold of the [Cu2O2]2+ moiety observed in the X-ray structure, presumably due to the caddie protein tyrosine at the active site, is absent in the simulations. LFMD gives a clear and persistent distinction between equatorial and axial Cu–N distances, with the latter about 0.2 Å longer and remaining syn to each other. However, the two coordination spheres display important differences. LFMD simulations of the symmetric model complex [μ-η2:μ2-O2{Cu(Meim)3}2]2+ (Meim is 5-methyl-1H-imidazole) provide a mechanism for syn–anti interchange of axial ligands which suggests, in combination with the old experimental X-ray data, the new LFMD simulations and traditional coordination chemistry arguments, that His54 on CuA is ‘insipiently axial’ and that a combination of a butterfly distortion of the [Cu2O2]2+ group and a rotation of the CuA(His)3 moiety converts the vacant, initially axial, binding site on CuA into a much more favourable equatorial site. Keywords Computational chemistry - Molecular dynamics - Molecular modelling
机译:首次报道了酪氨酸酶氧化形式的长时间尺度(16-ns)配体场分子动力学(LFMD)模拟。计算使用我们现有的3型铜力场作为过氧化物桥接的[Cu 2 O 2 ] 2 + 单元,将其翻译为将MMFF转换为AMBER格式以及新的收费方案。去除“球童”蛋白ORF378不会显着改变蛋白的二级和三级结构,该蛋白必须与酪氨酸酶结合才能生长晶体。对最后8 ns的笛卡尔坐标进行的全面主成分分析表明,蛋白质主链是相对刚性的。然而,在X射线结构中观察到的[Cu 2 O 2 ] 2 + 部分的明显蝶形折叠,可能是由于模拟中不存在活性部位的球童蛋白酪氨酸。 LFMD给出了赤道和轴向Cu-N距离之间的清晰而持久的区别,后者大约长0.2Å,并且彼此保持同步。但是,两个协调领域显示出重要的差异。对称模型复合体[μ-η 2 :μ 2 -O 2 {Cu(Meim) 3 } 2 ] 2 + (Meim为5-甲基-1H-咪唑)为轴向配体的顺反交换提供了一种机制,这提示与旧的实验X射线数据,新的LFMD模拟和传统的配位化学论证,表明Cu A 上的His 54 是“轴向轴向”并且蝶形畸变的组合[Cu 2 O 2 ] 2 + 的基团和Cu A (His)< sub> 3 部分将Cu A 上的空位(最初为轴向)结合位点转换为更有利的赤道位点。关键词计算化学-分子动力学-分子建模

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号