首页> 外文期刊>Japanese journal of applied physics >Quick-low-density parity check and dynamic threshold voltage optimization in 1Xnm triple-level cell NAND flash memory with comprehensive analysis of endurance, retention-time, and temperature variation
【24h】

Quick-low-density parity check and dynamic threshold voltage optimization in 1Xnm triple-level cell NAND flash memory with comprehensive analysis of endurance, retention-time, and temperature variation

机译:1Xnm三级单元NAND闪存中的快速低密度奇偶校验和动态阈值电压优化,并全面分析了耐久性,保留时间和温度变化

获取原文
获取原文并翻译 | 示例
           

摘要

NAND flash memory's reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive VRef shift (AVS) and VTH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (VRef) based on temperature, W/E cycles and retention-time. AVS stores the optimal VRef's in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between VTH states. DVO reduces BER by 80%. (C) 2016 The Japan Society of Applied Physics
机译:NAND闪存的可靠性会随着耐久性,保留时间和/或温度的提高而降低。在对1X nm三级单元(TLC)NAND闪存进行全面评估之后,提出了两种高度可靠的技术。第一项建议是快速低密度奇偶校验(Quick-LDPC),仅需读取一个单元即可准确估计包括温度,写入和擦除(W / E)周期影响的误码率(BER)。和保留时间。结果,与传统的AEP-LDPC相比,实现了83%的读取等待时间减少。而且,与常规的Bose-Chaudhuri-Hocquenghem(BCH)纠错码(ECC)相比,W / E循环延长了100%。第二种建议是动态阈值电压优化(DVO),包括两部分:自适应VRef偏移(AVS)和VTH空间控制(VSC)。 AVS通过根据温度,W / E周期和保持时间自适应地优化参考电压(VRef)来减少读取错误和延迟。 AVS将最佳VRef存储在一个表中,以便能够读取一个单元。 VSC通过优化VTH状态之间的电压裕量来进一步改善AVS。 DVO将BER降低了80%。 (C)2016年日本应用物理学会

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号