首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning
【24h】

Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning

机译:建模基本无人机飞行参数对LiDAR点云的影响,以促进基于目标的计划

获取原文
获取原文并翻译 | 示例
       

摘要

Utilised globally across a wide range of applications, the ability to assess and understand LiDAR system capabilities represents an essential component in developing informed decisions on instrument selection and the logistical planning processes associated with site-specific limitations, project objectives and UAV operations. This study employed the new SLAM-based CSIRO "Hovermap" LiDAR system within a purpose-built environment as a testbed to experimentally investigate the interactive effects of fundamental UAV flight parameters on key metrics of LiDAR point clouds. Assessed within a full factorial design at both Site- and Target-levels, the UAV input variables of Pattern, ground Speed and above ground Altitude (AGL) were tested against the point cloud response variables Density, GSD and Accuracy as measured by RMSE and cloud-to-mesh Euclidian distance ('Deviation'). A novel approach is described wherein the trajectory file of each flight was examined to determine the observed values of the input and response variables, remove noise and facilitate a standardised basis of comparison. Several new terms are introduced including Sampling Effort Variable (SEV, s.m(-2)), Effective Scan Rate (ESR, pts.s(-1)) and Effective Density Rate (EDR, pts.m(-2).s(-1)) as well as an alternate approach to describe Pattern (s.m(-1)) as a scalar quantity. Reporting significant effects with all response variables at both Site- and Target-levels, the Range of the LiDAR sensor, closely associated with Altitude, presented as the single most important factor. Interestingly, the combination of the independent variables as SEV and EDRpred ('predicted' EDR) showed the highest coefficient of determination in the Site-level prediction of Density (R-Adj(2) = 0.894) and GSD (R-Adj(2) = 0.978,), respectively, whilst Range best correlated with observed RMSE (R-Adj(2) = 0.948) and Deviation (R-Adj(2) = 0.963). Predictive models returned mixed results when evaluated at the Target-level and highlights the need for further investigation to achieve the maximum benefit of high-resolution UAV LiDAR. The results presented here confirm that the CSIRO Hovermap performance is robust and, although variable depending on UAV flight parameters, is predictable and demonstrates the potential value in understanding system performance in harmonised flight planning to achieve project-specific objectives.
机译:评估和了解LiDAR系统功能的能力已在全球范围内广泛使用,它是制定针对仪器选择和与现场特定限制,项目目标和无人机操作相关的后勤计划流程的明智决定的重要组成部分。这项研究在专用环境中采用了基于SLAM的新型CSIRO“ Hovermap” LiDAR系统作为测试平台,以实验方式研究基本无人机飞行参数对LiDAR点云关键指标的交互作用。在站点级和目标级的全因子设计中进行了评估,针对由RMSE和云测得的点云响应变量密度,GSD和精度,测试了模式,地面速度和地面高度(AGL)的无人机输入变量到网格的欧几里得距离(“偏差”)。描述了一种新颖的方法,其中检查每个飞行的轨迹文件以确定输入和响应变量的观测值,消除噪声并促进比较的标准化基础。引入了几个新术语,包括采样努力变量(SEV,sm(-2)),有效扫描率(ESR,pts.s(-1))和有效密度率(EDR,pts.m(-2).s( -1))以及将模式(sm(-1))描述为标量的另一种方法。由于在站点和目标级别都报告了所有响应变量的显着影响,因此与高度密切相关的LiDAR传感器的范围是唯一最重要的因素。有趣的是,独立变量SEV和EDRpred(“预测的” EDR)的组合在站点级密度预测(R-Adj(2)= 0.894)和GSD(R-Adj(2)中显示出最高的确定系数)= 0.978,),而范围与观察到的RMSE(R-Adj(2)= 0.948)和偏差(R-Adj(2)= 0.963)最佳相关。在目标级别进行评估时,预测模型返回了混合结果,并强调需要进一步研究以实现高分辨率无人机LiDAR的最大利益。此处显示的结果证实了CSIRO Hovermap的性能是可靠的,并且尽管取决于无人机飞行参数而变化,但仍是可预测的,并证明了在理解系统性能以协调飞行计划以实现特定项目目标方面的潜在价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号