...
首页> 外文期刊>Iranian Journal of Science and Technology, Transactions of Mechanical Engineering >Enhancement of Flow Boiling Heat Transfer Performance Using Single-Step Electrodeposited Cu-Al_2O_3 Nanocomposite Coating on Copper Substrate
【24h】

Enhancement of Flow Boiling Heat Transfer Performance Using Single-Step Electrodeposited Cu-Al_2O_3 Nanocomposite Coating on Copper Substrate

机译:在铜基板上单步电沉积Cu-Al_2O_3纳米复合涂层增强流沸腾换热性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The higher-thermal conductive Cu-Al2O3 nanoparticles are deposited on the copper surface by using single-step electrodeposition technique. The developed Cu-Al2O3 nanocomposite-coated surfaces attained excellent adhesiveness with copper substrate. Again, the surface morphology parameters like wettability, roughness, porosity, and porous layer thickness, as per the necessity in structured surfaces, can be easily managed by managing the electrodeposition parameters like potential difference, deposition time, current density, and electrolyte concentration. The surface morphology characterization is carried out with respect to the wettability, roughness, coating thickness, porosity, and average pore diameter. The flow boiling heat transfer experiments at different mass flow rates with deionized (DI) water are carried out in a minichannel of developed experimental setup. The Cu-Al2O3 coating offers lower thermal resistance due to its higher thermal conductivity and lower coating thickness. Again, the percentage enhancement in critical heat flux (CHF) and boiling heat transfer coefficient (BHTC) of the Cu-Al2O3-coated surfaces is decreased with the increase in mass flow rate, which is owing to the partial wetting of the pores at higher mass flow rate. The maximum augmentations in BHTC and CHF for the coated surfaces are achieved up to 84% and 86% as compared to the bare surface, respectively, which are due to the improvement in surface wettability and formation of huge number of cavities/pores on coated surfaces. Thus, the porous surface with minichannel is the potential candidate for the microelectronics cooling devices due to its compact size, lower heating surface temperature, higher CHF, and higher BHTC.
机译:通过单步电沉积技术将高导热性的Cu-Al2O3纳米颗粒沉积在铜表面上。已开发的Cu-Al2O3纳米复合涂层表面与铜基板具有出色的粘合性。同样,根据结构化表面的需要,可通过管理电沉积参数(例如电势差,沉积时间,电流密度和电解质浓度)轻松管理表面形态参数(如润湿性,粗糙度,孔隙率和多孔层厚度)。相对于润湿性,粗糙度,涂层厚度,孔隙率和平均孔径进行表面形态表征。在已开发的实验装置的微型通道中,用去离子(DI)水在不同质量流量下进行沸腾传热实验。 Cu-Al2O3涂层由于其较高的导热性和较低的涂层厚度而具有较低的热阻。同样,随着质量流量的增加,Cu-Al2O3涂层表面的临界热通量(CHF)和沸腾传热系数(BHTC)的增加百分比降低,这是由于在较高温度下孔的部分润湿质量流率。与裸露的表面相比,涂层表面的BHTC和CHF的最大增加分别达到了84%和86%,这是由于表面润湿性的改善以及在涂层表面形成大量的孔/孔所致。因此,具有小通道的多孔表面由于其紧凑的尺寸,较低的加热表面温度,较高的CHF和较高的BHTC而成为微电子冷却设备的潜在候选对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号