首页> 外文期刊>Iranian Journal of Science and Technology, Transactions of Mechanical Engineering >Numerical Simulation of Submarine Surfacing Motion in Regular Waves
【24h】

Numerical Simulation of Submarine Surfacing Motion in Regular Waves

机译:规则波下海面堆焊运动的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Submarine surfacing in wave's environments is fully three-dimensional unsteady motion and includes complex coupling with hydrodynamic force and dynamic motion of the rigid body. This paper uses in-house computational fluid dynamics (CFD) code HUST-SHIP to solve RANS equation coupled with six degrees-of-freedom (6DOF) solid body motion equations. RANS equations are solved by finite difference method and PISO algorithm. Level-set method is used to simulate the free surface flow. Computations are performed for the DARPA SUBOFF model. The structured dynamic overset grid is applied to the numerical simulation of submarine surfacing motion in calm water, transverse regular waves with different ratio of wave height over submarine length, wave length over submarine length and surfacing depth over submarine length. The asymmetric vortices in the process of submarine surfacing can be captured in this study. The existence of the vortex generated during the submarine surfacing could cause the destabilizing hydrodynamic rolling moment. Relations among maximum roll angle, surfacing velocity and wave parameters are concluded by comparison with variation trend of submarine motion attitude and velocities of surfacing in different wave conditions. Simulation results confirm that wave height and wave length lead to surfacing velocity and roll angle changes, significantly. Maximum roll angle also increases with the increase in wave height and wave length. Maximum roll angle with wave height (h/L = 0.04) can reach to 7.29 degrees, while maximum roll angle with wave length (lambda/L = 1.5) can reach to 5.79 degrees by contrast with 0.85 degrees in calm water. Surfacing depth has a great influence on the changes of submarine trim during surfacing. For rolling motion in the transverse wave, maximum roll angle with depth length ratio (d/L = 1.2) can reach to 2.46 times as much as that with depth length ratio (d/L = 0.6).
机译:波浪环境中的潜艇表面完全是三维非定常运动,包括与流体动力和刚体的动态运动的复杂耦合。本文使用内部计算流体动力学(CFD)代码HUST-SHIP来求解带有六个自由度(6DOF)固体运动方程的RANS方程。通过有限差分法和PISO算法求解RANS方程。水平集方法用于模拟自由表面流。针对DARPA SUBOFF模型执行计算。将结构化的动态过冲网格应用于平静水中海面堆焊运动的数值模拟,横向规则波具有不同的波高与潜艇长度比,海底长度与潜艇长度比以及海底长度与海底长度比。在这项研究中,可以捕捉到海面堆焊过程中的不对称涡流。潜艇表面堆焊过程中产生的涡流的存在可能会导致动荡侧倾力矩不稳定。通过比较不同波浪条件下海底运动姿态和速度的变化趋势,得出最大侧倾角,堆焊速度与波浪参数之间的关系。仿真结果证实,波高和波长会导致堆焊速度和侧倾角明显改变。最大横滚角也随着波高和波长的增加而增加。波浪高度(h / L = 0.04)的最大侧倾角可以达到7.29度,而波浪长度(lambda / L = 1.5)的最大侧倾角可以达到5.79度,而在平静水中则为0.85度。堆焊深度对堆焊过程中海底纵倾的变化影响很大。对于横波中的滚动运动,深度长度比率(d / L = 1.2)的最大滚动角可以达到深度长度比率(d / L = 0.6)的最大滚动角的2.46倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号