首页> 外文期刊>Iranian Journal of Science and Technology, Transactions of Mechanical Engineering >Slip and Hall Current Effects on Jeffrey Fluid Suspension Flow in a Peristaltic Hydromagnetic Blood Micropump
【24h】

Slip and Hall Current Effects on Jeffrey Fluid Suspension Flow in a Peristaltic Hydromagnetic Blood Micropump

机译:滑动和霍尔电流对蠕动水电磁血液微型泵中杰弗里流体悬浮液的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The magnetic properties of blood allow it to be manipulated with an electromagnetic field. Electromagnetic blood flow pumps are a robust technology which provide more elegant and sustainable performance compared with conventional medical pumps. Blood is a complex multi-phase suspension with non-Newtonian characteristics which are significant in microscale transport. Motivated by such applications, in the present article, a mathematical model is developed for magnetohydrodynamic pumping of blood in a deformable channel with peristaltic waves. A Jeffery's viscoelastic formulation is employed for the rheology of blood. A two-phase fluid-particle ("dusty'') model is utilized to better simulate suspension characteristics (plasma and erythrocytes). Hall current and wall slip effects are incorporated to achieve more realistic representation of actual systems. A two-dimensional asymmetric channel with dissimilar peristaltic wave trains propagating along the walls is considered. The governing conservation equations for mass, fluid and particle momentum are formulated with appropriate boundary conditions. The model is simplified using long wavelength and creeping flow approximations. The model is also transformed from the fixed frame to the wave frame and rendered non-dimensional. Analytical solutions are derived. The resulting boundary value problem is solved analytically, and exact expressions are derived for the fluid velocity, particulate velocity, fluid/particle fluid and particulate volumetric flow rates, axial pressure gradient, pressure rise and skin friction distributions are evaluated in detail. Increasing Hall current parameter reduces bolus growth in the channel, particle-phase velocity and pressure difference in the augmented pumping region, whereas it increases fluid phase velocity, axial pressure gradient and pressure difference in the pumping region. Increasing the hydrodynamic slip parameter accelerates both particulate and fluid phase flow at and close to the channel walls, enhances wall skin friction, boosts pressure difference in the augmented pumping region and increases bolus magnitudes. Increasing viscoelastic parameter (stress relaxation time to retardation time ratio) decelerates the fluid phase flow, accelerates the particle-phase flow, decreases axial pressure gradient, elevates pressure difference in the augmented pumping region, and reduces pressure difference in the pumping region. Increasing drag particulate suspension parameter decelerates the particle-phase velocity, accelerates the fluid phase velocity, strongly elevates axial pressure gradient and reduces pressure difference (across one wavelength) in the augmented pumping region. Increasing particulate volume fraction density enhances bolus magnitudes in both the upper and lower zones of the channel and elevates pressure rise in the augmented pumping region.
机译:血液的磁性使其可以通过电磁场进行操纵。电磁血流泵是一项强大的技术,与传统的医用泵相比,它具有更优雅,更可持续的性能。血液是一种复杂的多相悬浮液,具有非牛顿特性,在微尺度传输中很重要。出于这种应用的动机,在本文中,开发了一种数学模型,用于利用蠕动波在可变形通道中对血液进行磁流体动力泵送。 Jeffery的粘弹性制剂用于血液流变学。利用两相流-颗粒(“ dusty”)模型更好地模拟悬浮特性(血浆和红细胞),并结合了霍尔电流和壁滑效应来实现对实际系统的更真实表示。二维非对称通道考虑不同蠕动波列沿壁传播的问题,在适当的边界条件下制定了质量,流体和颗粒动量的控制守恒方程,使用长波长和蠕变流近似简化了模型,并对模型进行了固定框架到波框架并呈现无量纲,得到解析解,解决由此产生的边界值问题,并得出流体速度,颗粒速度,流体/颗粒流体和颗粒体积流量,轴向压力的精确表达式详细评估了梯度,压力上升和皮肤摩擦分布。增大霍尔电流参数可减小通道中的团块增长,增大的泵送区域中的颗粒相速度和压力差,而增大泵浦区域中的流体相速度,轴向压力梯度和压力差。增大流体动力学滑移参数可加速通道壁处和通道壁附近的颗粒流和流体流,增加壁的表皮摩擦力,增大增大的泵送区域中的压差,并增大推注量。粘弹性参数的增加(应力松弛时间与延迟时间之比)使流体流减速,加速了颗粒相流,减小了轴向压力梯度,增大了泵浦区域的压力差,并减小了泵浦区域的压力差。阻力颗粒悬浮液参数的增加会降低颗粒相速度,加速流体相速度,大大提高轴向压力梯度,并减小增大的泵浦区域中的压力差(跨一个波长)。颗粒体积分数密度的增加在通道的上部和下部区域都增加了推注量,并在增大的泵送区域中提高了压力上升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号