...
首页> 外文期刊>Ionics >Solvothermal synthesis of LiCo1−x Mn x PO4/C cathode materials for lithium-ion batteries
【24h】

Solvothermal synthesis of LiCo1−x Mn x PO4/C cathode materials for lithium-ion batteries

机译:溶剂热合成锂离子电池正极材料LiCo1-x Mn x PO4 / C

获取原文
获取原文并翻译 | 示例
           

摘要

LiCo1−x Mn x PO4/C cathode materials are selectively synthesized by a solvothermal method in ethylene glycol solvent using glucose, LiCl, H3PO4, MnCl2·4H2O, and Co(NO3)2·6H2O as precursors. The obtained samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) and the electrochemical performances are also evaluated using a LAND CT2001A battery test system at room temperature. XRD result demonstrates the formation of LiCo1−x Mn x PO4 solid solution and the enlarged channels are benefit for Li+ migration. SEM graph indicates that the particle size of LiCo0.5Mn0.5PO4/C is about several hundred nanometers and aggregates to large particles located in the range of 2–3 μm. TEM image illustrates that the core/shell-structured LiCo0.5Mn0.5PO4/C solid solution is indeed obtained by this method. The high specific surface area (35 m2/g) of LiCo0.5Mn0.5PO4/C could make this solid solution contact with the electrolyte more sufficiently and benefit for Li+ transportation. The capacity, flat voltage, and cyclical stability of LiCo1−x Mn x PO4/C are improved compared to LiMnPO4 and LiCoPO4 due to the improved electronic conductivity and lithium-ion conductivity which resulted from carbon coating and foreign element incorporation.
机译:在乙二醇溶剂中,采用葡萄糖,LiCl,H3 PO4 ,MnCl2溶剂热法选择性合成LiCo1-x Mn x PO4 / C阴极材料·4H2 O和Co(NO3 )2 ·6H2 O作为前体。通过X射线衍射(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)对获得的样品进行表征,并且还在室温下使用LAND CT2001A电池测试系统对电化学性能进行评估。 XRD结果表明LiCo1-x Mn x PO 4固溶体的形成,增大的通道有利于Li +迁移。扫描电镜图表明,LiCo0.5 Mn0.5 PO4 / C的粒径约为几百纳米,聚集在2-3μm范围内的大颗粒上。 TEM图像表明,该方法确实获得了核/壳结构的LiCo0.5 Mn0.5 PO4 / C固溶体。 LiCo0.5 Mn0.5 PO4 / C的高比表面积(35 m2 / g)可使该固溶体与电解质更充分地接触并受益用于Li + 运输。与LiMnPO4 和LiCoPO4 相比,LiCo1-x Mn x PO 4 / C的容量,平坦电压和循环稳定性得到了改善。电导率和锂离子电导率,这是由于碳涂层和杂质元素的结合而产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号