【24h】

Non-Newtonian mechanics for small bodies

机译:小型牛顿力学

获取原文
获取原文并翻译 | 示例
       

摘要

Interaction of mass and energy for small bodies acquires non-Newtonian behavior. Postulated is the existence of space/time to depend on the activation and deactivation of mass in relation to the absorption and dissipation of energy. Borne from the manifestation of the creation of matter is the concept that the intrinsic inhomogeneity gives rise to interfaces. Objects and events appear to exist as opposing poles with a transitional character across the interface. Simultaneity of direct-absorption and self-dissipation energy density, denoted, respectively, by W and D , is further hypothesized to depend on the square of the velocity a_↑~2 that increases monotonically with time as indicated by the arrow head notation. The demise is that W = M_↓ a_↑~2 and D = M~↓ a_↑~2 where M_↓ is the activated mass associated with the direct-absorption energy density and JW is the deactivated mass associated with the self-dissipation energy density. The scheme also applies to large bodies. Scale segmentation justifies localizing attention to the energy source and/or sink as the region of damage. By specifying the life distribution for the different size/time scales, say t_(pi)/t_(na)/t_(mi)/t_(ma)/t_(st), the rate at which damage is being done for each scale segment can be determined. The subscripts pi, na, mi, ma, and st designate, respectively, pico, nano, micro, macro, and structure. The actual time distribution in years may be 1.5/2.5/3.5/5.5/7.0 for a total of 20 years. The time of arrow in years will depend on the problem definition. The direction of pico→ nano→micro→macro →struc. corresponds to progressive damage while other choices can also be considered. The energy density function can be found without a knowledge of the entire field quantities such as stress and strain. Demonstrated will be a picoano/micro/macro fatigue cracking model of a 2024-T3 aluminum panel. Only the undamaged material properties are employed. Time degradation of the picoano/micro/macro material structure is derived by using nine scale transitional physical parameters: three for the picoano range ( μ_(pia)~* , σ_(pia)~*, d_(pia)~*), three for the nano/micro range (μ_(na/mi)~* , σ_(na/mi)~* ,d_(na/mi)~*) and three for the micro/macro range (μ_(mi/ma)~*, σ_(mi/ma)~*,d_(mi/ma)~*). Only the ratios of two successive scale sensitive parameters need to be specified. The time dependent physical parameters at the lower scale are implicit and needed only for analytical continuation. More precisely, the transitional character of picocracks, nanocracks, microcracks and macrocracks are determined from the specified life expectancy of time arrow according to pico→nano→micro→macro with the respective singularity strength of λ given by 1.25/1.00/0.75/0.50. Note that λ=0.5 corresponds to the inverse square root r~(-0.5) in fracture mechanics with r being the distance from the macro-crack tip. The micro-crack, nanocrack and pico-crack tips are assigned with the singularities r~(-0.75), r~(-1.00), and r~(-1.25), respectively. The time dependent material degradation process over the total life span is enforced such that the energy dissipated in damaging the internal material structure at each scale range can be matched with that caused by loading. Material inhomogeneities at the different scales are thus compensated by the inhomogeneous reinforcements at the same different scales. In this way, the energy release rate at each scale would be relatively homogeneous and controlled.
机译:小物体的质量和能量相互作用获得非牛顿行为。假定存在空间/时间,取决于能量的吸收和消散,其取决于质量的激活和去激活。源于物质创造形式的概念是内在的不均匀性引起界面的概念。对象和事件似乎以相对的极点存在,并且在界面上具有过渡性格。进一步假设分别由W和D表示的直接吸收和自耗散能量密度的同时性取决于速度a_↑〜2的平方,该速度随箭头的符号随时间单调增加。消亡是W = M_↓a_↑〜2和D = M〜↓a_↑〜2其中M_↓是与直接吸收能量密度相关的活化质量,而JW是与自耗散能量相关的失活质量密度。该计划也适用于大型机构。规模分割证明将注意力集中在作为损坏区域的能源和/或汇上。通过指定不同大小/时间刻度的寿命分布,例如t_(pi)/ t_(na)/ t_(mi)/ t_(ma)/ t_(st),每种刻度的损坏率细分可以确定。下标pi,na,mi,ma和st分别表示pico,nano,micro,macro和structure。总计20年的年实际时间分布可能是1.5 / 2.5 / 3.5 / 5.5 / 7.0。以年为单位的箭头时间取决于问题的定义。皮克→纳米→微→宏观→结构的方向。对应于渐进式损坏,同时也可以考虑其他选择。在不了解整个场量(例如应力和应变)的情况下,可以找到能量密度函数。展示的将是2024-T3铝面板的皮克/纳米/微/宏观疲劳裂纹模型。仅采用未损坏的材料特性。皮克/纳米/微米/宏观材料结构的时间退化是通过使用九个标度过渡物理参数得出的:三个用于皮克/纳米范围(μ_(pi / na)〜*,σ_(pi / na)〜*,d_ (pi / na)〜*),纳米/微米范围的三个(μ_(na / mi)〜*,σ_(na / mi)〜*,d_(na / mi)〜*)和三个微米/宏范围(μ_(mi / ma)〜*,σ_(mi / ma)〜*,d_(mi / ma)〜*)。仅需要指定两个连续的比例敏感参数的比率。较低级别的时间相关物理参数是隐式的,仅在分析连续性时才需要。更精确地,根据pico→nano→micro→macro由时间箭头的指定寿命来确定皮裂纹,纳米裂纹,微裂纹和大裂纹的过渡特性,其中奇异强度λ分别为1.25 / 1.00 / 0.75 / 0.50。注意,λ= 0.5对应于断裂力学中的平方根r〜(-0.5),其中r是距宏裂纹尖端的距离。微裂纹尖端,纳米裂纹尖端和皮裂纹尖端分别具有奇异性r〜(-0.75),r〜(-1.00)和r〜(-1.25)。在整个寿命周期内必须执行随时间变化的材料降解过程,以使在每个尺度范围内破坏内部材料结构所耗散的能量可以与负载所造成的能量相匹配。因此,在不同尺度上的材料不均匀性可以通过在相同不同尺度上的不均匀增强材料得到补偿。以这种方式,在每个尺度上的能量释放速率将是相对均匀的并且是受控的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号