首页> 外文期刊>The International journal of robotics research >Bipedal walking and push recovery with a stepping strategy based on time-projection control
【24h】

Bipedal walking and push recovery with a stepping strategy based on time-projection control

机译:基于时间投影控制的步进策略实现双足步行和推举恢复

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we present a simple control framework for online push recovery on biped robots with dynamic stepping properties. Owing to relatively heavy legs in our humanoid robot COMAN, we use a linear model called 3LP, which is composed of three pendulums to take swing and torso dynamics into account. Based on 3LP equations, we formulate discrete linear quadratic regulator (LQR) controllers and use a particular time-projection method to adjust footstep locations during the motion continuously. This process, which is based on pelvis and swing foot tracking errors, naturally considers swing dynamics and leads to leg-retraction properties. Suggested adjustments are added to the Cartesian 3LP gaits and converted into joint-space trajectories through inverse kinematics. Fixed and adaptive foot lift strategies are also used to ensure enough ground clearance in perturbed walking conditions. The proposed control architecture is robust, yet uses very simple state estimation and basic position tracking. We rely on series elastic actuators to absorb impacts while introducing simple laws to compensate for spring compressions. Extensive experiments on COMAN (real) and Atlas (simulated) robots demonstrate the functionality of different control blocks and prove the effectiveness of time-projection in extreme push recovery scenarios. We also show self-produced and emergent walking gaits when the robot is subject to continuous dragging forces. These gaits feature dynamic walking robustness with minimal reliance on the ankles and avoiding any active zero moment point (ZMP) control. The proposed architecture is therefore generic, computationally very fast and yet with no critical parameter to tune.
机译:在本文中,我们提出了一个简单的控制框架,该框架用于具有动态步进属性的两足动物机器人上的在线推式恢复。由于我们的人形机器人COMAN中的腿比较重,我们使用了一个称为3LP的线性模型,该模型由三个摆组成,以考虑挥杆和躯干动力学。基于3LP方程,我们制定了离散线性二次调节器(LQR)控制器,并使用特定的时间投影方法来连续调整运动过程中的足迹位置。此过程基于骨盆和挥脚跟踪误差,自然会考虑挥杆动力学并导致腿后缩。建议的调整已添加到笛卡尔3LP步态中,并通过逆运动学转换为关节空间轨迹。固定和自适应的脚部抬高策略还用于确保在扰动的步行条件下有足够的离地间隙。所提出的控制体系结构是鲁棒的,但是使用非常简单的状态估计和基本位置跟踪。我们依靠串联弹性致动器来吸收冲击,同时引入简单的规律来补偿弹簧压缩。在COMAN(真实)和Atlas(模拟)机器人上的大量实验演示了不同控制块的功能,并证明了在极端推回恢复方案中时间投影的有效性。当机器人受到持续的拖曳力时,我们还会显示出自己产生和出现的步行步态。这些步态具有动态步行健壮性,对脚踝的依赖性极小,并且避免了任何主动的零力矩点(ZMP)控制。因此,所提出的体系结构是通用的,计算速度非常快,并且没有需要调整的关键参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号