...
首页> 外文期刊>International journal of remote sensing >Adaptive retracking of Jason-1 altimetry data for inland waters: the example of the Gorky Reservoir
【24h】

Adaptive retracking of Jason-1 altimetry data for inland waters: the example of the Gorky Reservoir

机译:内陆水域Jason-1高程数据的自适应跟踪:以高尔基水库为例

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Standard altimetry data processing developed for open ocean conditions can be inapplicable for the case of inland waters, especially for narrow, elongated water-bodies and rivers, where the distance between shores is less than 10 km (while the eliminated area within the gain of the radar antenna for Jason-1,2 is about 50 km). These conditions are typical, for example, of the majority of reservoirs of the Volga River cascade (with one exception: the Rybinskoe Reservoir). Under these conditions only a few telemetric impulses fit the validity criteria, which causes a severe loss of data. Besides, errors in the water level retrieved from the altimetric measurements are enormous, as was demonstrated on the basis of comparison of in situ measurements at hydro-gauging stations for the water level of the Gorky Reservoir of the Volga River and all that is available along track 10 Hz TOPEX/Poseidon altimetry data and 20 Hz Jason altimetry data over the reservoir area. The problem of minimization of the errors can be resolved by retracking. For justification of the optimal retracking algorithm, the average impulse response of the statistically inhomogeneous surface was calculated theoretically, based on the works of Brown (1977) and Barrick and Lipa (1985) for the model of the terrain in the vicinity of the Gorky Reservoir. The model represents the main typical features of the waveform examples (e.g. high peaks or irregular complex shape), and the modelled waveforms are in good agreement with the Jason-1,2 waveforms for the same area. It was shown that for the Gorky Reservoir significant wave height (SWH) did not exceed 0.5 m (corresponding to the width of the leading edge less than 1 telemetric gate). Under these conditions the retracking algorithm based on the detection of the beginning of the leading edge of telemetric impulses is preferable for a correct assessment of variations in the water level in the Gorky Reservoir. A comparison of the data with in situ measurements at the hydro-gauging stations for the water level of the Gorky Reservoir shows that retracking dramatically increases the number of data involved in monitoring and significantly improves the accuracy of the measurement of the water level. The retracked data of water level have also been validated by comparing them with Jason-2 and Jason-1 after carrying out measurements for the Gorky Reservoir. The general principles of retracking algorithms for complex areas (land, coastal zone, inland waters, etc.), based on calculations of the waveform and taking into account statistical inhomogeneity of the reflecting surface adjusted to a certain geographic region, are discussed.
机译:针对公海条件开发的标准测高数据处理可能不适用于内陆水域,特别是对于狭窄,细长的水体和河流而言,因为两岸之间的距离小于10 km(而在Jason-1,2的雷达天线约50公里。例如,这些条件是伏尔加河梯级的大部分水库的典型条件(除了一个例外:里宾斯科水库)。在这些条件下,只有少数遥测脉冲符合有效性标准,这会导致严重的数据丢失。此外,从高空测量中获得的水位误差很大,这是根据对伏尔加河高尔基水库及沿岸所有可用的水位测量站的原位测量结果进行比较的结果证明的在储层区域内跟踪10 Hz TOPEX /波塞冬测高仪数据和20 Hz Jason测高仪数据。可以通过重新跟踪来解决使错误最小化的问题。为了证明最优跟踪算法的合理性,根据Brown(1977)和Barrick and Lipa(1985)对高尔基水库附近地形模型的工作,从理论上计算了统计上不均匀表面的平均脉冲响应。 。该模型代表了波形示例的主要典型特征(例如高峰或不规则的复杂形状),并且在相同区域内建模的波形与Jason-1,2波形非常吻合。结果表明,对于高尔基水库,重要的波高(SWH)不超过0.5 m(对应于前缘的宽度小于1个遥测闸门)。在这些条件下,基于对遥测脉冲前沿开始位置的检测的重新跟踪算法对于正确评估高尔基水库中水位的变化是更可取的。将数据与高尔基水库水位测量站的实地测量结果进行比较,结果表明,重新追踪大大增加了监测所涉及的数据数量,并显着提高了水位测量的准确性。在对高尔基水库进行测量之后,还通过将它们与Jason-2和Jason-1进行比较来验证水位的重新跟踪数据。讨论了基于波形的计算并考虑到调整到某个地理区域的反射面的统计不均匀性,对复杂区域(陆地,沿海地区,内陆水域等)进行重新跟踪算法的一般原理。

著录项

  • 来源
    《International journal of remote sensing》 |2012年第23期|p.7559-7578|共20页
  • 作者单位

    Institute of Applied Physics RAS, Nizhny Novgorod, Russia,Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia;

    Institute of Applied Physics RAS, Nizhny Novgorod, Russia;

    Institute of Applied Physics RAS, Nizhny Novgorod, Russia;

    Institute of Applied Physics RAS, Nizhny Novgorod, Russia;

    Geophysical Centre of RAS, Moscow, Russia,Space Research Institute RAS, Moscow, Russia;

    P.P. Shirshov Institute of Oceanology RAS, Moscow, Russia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号