首页> 外文期刊>International journal of remote sensing >Forest fuel treatment detection using multi-temporal airborne lidar data and high-resolution aerial imagery: a case study in the Sierra Nevada Mountains, California
【24h】

Forest fuel treatment detection using multi-temporal airborne lidar data and high-resolution aerial imagery: a case study in the Sierra Nevada Mountains, California

机译:利用多时空机载激光雷达数据和高分辨率航空影像进行森林燃料处理检测:以加利福尼亚内华达山脉为例

获取原文
获取原文并翻译 | 示例
           

摘要

Treatments to reduce forest fuels are often performed in forests to enhance forest health, regulate stand density, and reduce the risk of wildfires. Although commonly employed, there are concerns that these forest fuel treatments (FTs) may have negative impacts on certain wildlife species. Often FTs are planned across large landscapes, but the actual treatment extents can differ from the planned extents due to operational constraints and protection of resources (e.g. perennial streams, cultural resources, wildlife habitats). Identifying the actual extent of the treated areas is of primary importance to understand the environmental influence of FTs. Light detection and ranging (lidar) is a powerful remote-sensing tool that can provide accurate measurements of forest structures and has great potential for monitoring forest changes. This study used the canopy height model (CHM) and canopy cover (CC) products derived from multi-temporal airborne laser scanning (ALS) data to monitor forest changes following the implementation of landscape-scale FT projects. Our approach involved the combination of a pixel-wise thresholding method and an object-of-interest (OBI) segmentation method. We also investigated forest change using normalized difference vegetation index (NDVI) and standardized principal component analysis from multi-temporal high-resolution aerial imagery. The same FT detection routine was then applied to compare the capability of ALS data and aerial imagery for FT detection. Our results demonstrate that the FT detection using ALS-derived CC products produced both the highest total accuracy (93.5%) and kappa coefficient () (0.70), and was more robust in identifying areas with light FTs. The accuracy using ALS-derived CHM products (the total accuracy was 91.6%, and the was 0.59) was significantly lower than that using ALS-derived CC, but was still higher than using aerial imagery. Moreover, we also developed and tested a method to recognize the intensity of FTs directly from pre- and post-treatment ALS point clouds.
机译:经常在森林中进行减少森林燃料的处理,以增强森林健康,调节林分密度并减少野火的风险。尽管通常采用,但人们担心这些森林燃料处理(FTs)可能对某些野生动植物物种产生负面影响。通常,FTs是在大片景观上规划的,但是由于操作上的限制和资源(例如多年生溪流,文化资源,野生动植物栖息地)的保护,实际的处理程度可能与计划的范围有所不同。确定治疗区域的实际范围对于了解FTs的环境影响至关重要。光检测和测距(激光)是一种功能强大的遥感工具,可以提供对森林结构的准确测量,并具有监测森林变化的巨大潜力。这项研究使用了从多时空机载激光扫描(ALS)数据得出的树冠高度模型(CHM)和树冠覆盖(CC)产品来监视景观规模FT项目实施后的森林变化。我们的方法涉及像素级阈值化方法和目标对象(OBI)分割方法的组合。我们还使用归一化植被指数(NDVI)和来自多时相高分辨率航空影像的标准化主成分分析来调查森林变化。然后应用相同的FT检测例程来比较ALS数据和航空影像进行FT检测的能力。我们的结果表明,使用ALS衍生的CC产品进行的FT检测可产生最高的总准确度(93.5%)和kappa系数()(0.70),并且在识别带有轻FT的区域时更为可靠。使用ALS派生的CHM产品的准确度(总准确度为91.6%,且为0.59)明显低于使用ALS派发的CC的准确度,但仍高于使用航空影像的准确度。此外,我们还开发并测试了一种直接从治疗前和治疗后ALS点云中识别FT强度的方法。

著录项

  • 来源
    《International journal of remote sensing》 |2016年第14期|3322-3345|共24页
  • 作者单位

    Univ Calif Merced, Sch Engn, Sierra Nevada Res Inst, Merced, CA USA;

    Univ Calif Merced, Sch Engn, Sierra Nevada Res Inst, Merced, CA USA;

    US Forest Serv, USDA, Pacific Southwest Res Stn, Davis, CA USA|Univ Calif Berkeley, Ctr Fire Res & Outreach, Berkeley, CA USA;

    Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA;

    Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China;

    Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号