首页> 外文期刊>International journal of remote sensing >Development of a forest canopy height estimation model using GLAS full waveform data over sloping terrain
【24h】

Development of a forest canopy height estimation model using GLAS full waveform data over sloping terrain

机译:利用GLAS全波形数据在倾斜地形上开发林冠层高度估计模型

获取原文
获取原文并翻译 | 示例
           

摘要

The accurate estimation of forest canopy height is important because it leads to increased accuracy in the estimation of biomass, which is used in the study of the global carbon cycle, forest productivity, and climate change. However, there is no well-developed model that accurately estimates canopy height over undulating land. This paper describes the development of a back-propagation (BP) neural network model that estimates forest canopy height more accurately than other types of model. For modeling purposes, the land in the study area was classified as either plain (low relief areas) or hilly (high relief areas). Four different slope partition thresholds (5 degrees, 10 degrees, 15 degrees, and 20 degrees) were tested to determine the most suitable boundary value. ICESat-GLAS data provided by the Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud and Land Elevation Satellite (ICESat), field survey data, and digital elevation model (DEM) data were collected and refined, and various parameters, including waveform extent and topographic index, were calculated. A BP neural network model was created to estimate forest canopy height. Two other models were also developed, one using the topographic index and the other using multiple linear regression, for comparison with the BP neural network model. After calibration, the three models were tested to assess the accuracy of the estimates. The results showed that the BP model estimated canopy height more accurately than the other two models. The use of a 10 degrees boundary to partition the topography into low relief areas and high relief areas improved the accuracy of each model; using the 10 degrees slope boundary, the coefficient of correlation r between the estimates given by the BP neural network model and the field-measured data increased from 0.89 to 0.95 and the Root Mean Square Error (RMSE) decreased from 1.01 to 0.73 m.
机译:准确估算森林冠层高度非常重要,因为它可以提高生物量估算的准确性,该估算用于研究全球碳循环,森林生产力和气候变化。但是,没有完善的模型可以准确估算起伏土地上的树冠高度。本文介绍了反向传播(BP)神经网络模型的开发,该模型比其他类型的模型更准确地估计森林冠层高度。为了进行建模,将研究区域中的土地分为平原(低起伏区域)或丘陵(高起伏区域)。测试了四个不同的坡度分配阈值(5度,10度,15度和20度),以确定最合适的边界值。由冰,云和陆地高程卫星(ICESat)上的地球科学激光高度计系统(GLAS)提供的ICESat-GLAS数据,现场调查数据和数字高程模型(DEM)数据已收集和完善,各种参数(包括波形)计算范围和地形指数。创建了一个BP神经网络模型来估计森林冠层高度。还开发了另外两个模型,一个模型使用了地形指数,另一个模型使用了多元线性回归,以便与BP神经网络模型进行比较。校准后,对这三个模型进行测试以评估估计的准确性。结果表明,BP模型比其他两个模型更准确地估计了冠层高度。使用10度边界将地形分为低起伏区域和高起伏区域可提高每个模型的精度;使用10度斜率边界,BP神经网络模型给出的估计值与实测数据之间的相关系数r从0.89增加到0.95,并且均方根误差(RMSE)从1.01减小到0.73 m。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号