首页> 外文期刊>International journal of reconfigurable computing >Algorithm and Architecture Optimization for 2D Discrete Fourier Transforms with Simultaneous Edge Artifact Removal
【24h】

Algorithm and Architecture Optimization for 2D Discrete Fourier Transforms with Simultaneous Edge Artifact Removal

机译:同时去除边缘伪像的二维离散傅立叶变换的算法和体系结构优化

获取原文
获取原文并翻译 | 示例
       

摘要

Two-dimensional discrete Fourier transform (DFT) is an extensively used and computationally intensive algorithm, with a plethora of applications. 2D images are, in general, nonperiodic but are assumed to be periodic while calculating their DFTs. This leads to cross-shaped artifacts in the frequency domain due to spectral leakage. These artifacts can have critical consequences if the DFTs are being used for further processing, specifically for biomedical applications. In this paper we present a novel FPGA-based solution to calculate 2D DFTs with simultaneous edge artifact removal for high-performance applications. Standard approaches for removing these artifacts, using apodization functions or mirroring, either involve removing critical frequencies or necessitate a surge in computation by significantly increasing the image size. We use a periodic plus smooth decomposition-based approach that was optimized to reduce DRAM access and to decrease ID FFT invocations. 2D FFTs on FPGAs also suffer from the so-called "intermediate storage" or "memory wall" problem, which is due to limited on-chip memory, increasingly large image sizes, and strided column-wise external memory access. We propose a "tile-hopping" memory mapping scheme that significantly improves the bandwidth of the external memory for column-wise reads and can reduce the energy consumption up to 53%. We tested our proposed optimizations on a PXIe-based Xilinx Kintex 7 FPGA system communicating with a host PC, which gives us the advantage of further expanding the design for biomedical applications such as electron microscopy and tomography. We demonstrate that our proposed optimizations can lead to 2.8x reduced FPGA and DRAM energy consumption when calculating high-throughput 4096 × 4096 2D FFTs with simultaneous edge artifact removal. We also used our high-performance 2D FFT implementation to accelerate filtered back-projection for reconstructing tomographic data.
机译:二维离散傅里叶变换(DFT)是一种广泛使用且计算量大的算法,具有众多的应用。 2D图像通常是非周期性的,但在计算其DFT时被假定为周期性的。由于频谱泄漏,这会在频域中产生十字形的伪像。如果将DFT用于进一步处理,尤其是用于生物医学应用,则这些伪影可能会产生严重后果。在本文中,我们提出了一种新颖的基于FPGA的解决方案,用于计算2D DFT,同时去除边缘伪像,以用于高性能应用。使用切趾函数或镜像来消除这些伪像的标准方法包括消除关键频率或通过显着增加图像大小来增加计算量。我们使用基于周期加平滑分解的方法,该方法经过优化以减少DRAM访问并减少ID FFT调用。 FPGA上的2D FFT也遭受所谓的“中间存储”或“内存墙”问题,这是由于片上存储器有限,图像尺寸越来越大以及列式逐行外部存储器访问所致。我们提出了一种“瓦片跳跃”存储器映射方案,该方案显着提高了用于列读取的外部存储器的带宽,并且可以将能耗降低多达53%。我们在与主机PC进行通信的基于PXIe的Xilinx Kintex 7 FPGA系统上测试了我们提出的优化方案,这为我们提供了进一步扩展生物医学应用(如电子显微镜和断层扫描)设计的优势。我们证明,当计算高吞吐量4096×4096 2D FFT并同时去除边缘伪像时,我们提出的优化方案可以使FPGA和DRAM能耗降低2.8倍。我们还使用了高性能2D FFT实现来加速滤波后的反投影,以重建断层扫描数据。

著录项

  • 来源
    《International journal of reconfigurable computing》 |2018年第2018期|1403181.1-1403181.17|共17页
  • 作者单位

    Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;

    Structural Cellular Biology Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan;

    Structural Cellular Biology Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan;

    Structural Cellular Biology Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:55:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号