首页> 外文期刊>International journal of numerical methods for heat & fluid flow >An enthalpy-based model of dendritic growth in a convecting binary alloy melt
【24h】

An enthalpy-based model of dendritic growth in a convecting binary alloy melt

机译:对流二元合金熔体中基于焓的枝晶生长模型

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - In the present work, a numerical method, based on the well established enthalpy technique, is developed to simulate the growth of binary alloy equiaxed dendrites in presence of melt convection. The paper aims to discuss these issues. Design/methodology/approach - The principle of volume-averaging is used to formulate the governing equations (mass, momentum, energy and species conservation) which are solved using a coupled explicit-implicit method. The velocity and pressure fields are obtained using a fully implicit finite volume approach whereas the energy and species conservation equations are solved explicitly to obtain the enthalpy and solute concentration fields. As a model problem, simulation of the growth of a single crystal in a two-dimensional cavity filled with an undercooled melt is performed. Findings - Comparison of the simulation results with available solutions obtained using level set method and the phase field method shows good agreement. The effects of melt flow on dendrite growth rate and solute distribution along the solid-liquid interface are studied. A faster growth rate of the upstream dendrite arm in case of binary alloys is observed, which can be attributed to the enhanced heat transfer due to convection as well as lower solute pile-up at the solid-liquid interface. Subsequently, the influence of thermal and solutal Peclet number and undercooling on the dendrite tip velocity is investigated. Originality/value - As the present enthalpy based microscopic solidification model with melt convection is based on a framework similar to popularly used enthalpy models at the macroscopic scale, it lays the foundation to develop effective multiscale solidification.
机译:目的-在目前的工作中,基于完善的焓技术,开发了一种数值方法来模拟在熔体对流情况下二元合金等轴枝晶的生长。本文旨在讨论这些问题。设计/方法/方法-体积平均原理用于制定控制方程(质量,动量,能量和物种守恒),这些方程使用显式-隐式耦合方法求解。速度和压力场是使用完全隐式有限体积方法获得的,而能量和物种守恒方程则被明确求解以获得焓和溶质浓度场。作为模型问题,对单晶在充满过冷熔体的二维腔中的生长进行仿真。结果-仿真结果与使用水平集方法和相场方法获得的可用解决方案的比较显示出很好的一致性。研究了熔体流动对沿固液界面的枝晶生长速率和溶质分布的影响。在二元合金的情况下,观察到上游枝晶臂的生长速度更快,这归因于对流以及固液界面上较低的溶质堆积,从而提高了传热。随后,研究了热和溶解的Peclet数以及过冷度对枝晶尖端速度的影响。独创性/价值-由于当前具有熔融对流的基于焓的微观凝固模型基于与宏观尺度上常用的焓模型相似的框架,因此为开发有效的多尺度凝固奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号