首页> 外文期刊>International Journal for Numerical and Analytical Methods in Geomechanics >A continuum mechanics-based framework for optimizing boundary and finite element meshes associated with underground excavations--framework
【24h】

A continuum mechanics-based framework for optimizing boundary and finite element meshes associated with underground excavations--framework

机译:基于连续力学的框架,用于优化与地下挖掘相关的边界和有限元网格-框架

获取原文
获取原文并翻译 | 示例
           

摘要

Many field problems, from stress analysis, heat transfer to contaminant transport, deal with disturbances in a continuum caused by a 'source' (defined by its discrete geometry) and a 'region of interest' (where a solution is sought). Depending on the location of regions of interest' in relation to the 'sources', the level of geometric detail necessary to represent the 'sources' in a model can vary considerably. A practical application of stress analysis in mining is the evaluation of the effects of continuous excavation on the states of stress around mine openings. Labour intensive model preparation and lengthy computation coupled with the interpretation of analysis results can have considerable impact on the successful operation of an underground mine, where stope failures can cost tens of millions of dollars and possibly lead to closure of the mine. A framework is proposed based on continuum mechanics principles to automatically optimize the level of geometric detail required for an analysis by simplifying the model geometry using expanded and modified algorithms that originated in computer graphics. This reduction in model size directly translates to savings in computational time. The results obtained from an optimized model have accuracy comparable to the uncertainty in input data (e.g. rock mass properties, geology, etc.). This first paper defines the optimization framework, while a companion paper investigates its efficiency and application to practical mining and excavation-related problems.
机译:从应力分析,传热到污染物迁移,许多现场问题都涉及到由“源”(由其离散的几何形状定义)和“目标区域”(寻求解决方案)引起的连续体扰动。取决于感兴趣区域相对于“源”的位置,在模型中表示“源”所需的几何细节水平可能会发生很大变化。应力分析在采矿中的实际应用是评估连续开挖对矿井孔周围应力状态的影响。劳动密集型模型的准备和冗长的计算,再加上分析结果的解释,可能会对地下矿山的成功运营产生重大影响,因为地下矿场的失败可能耗资数千万美元,并可能导致矿山的关闭。提出了一种基于连续力学原理的框架,该框架可通过使用源自计算机图形学的扩展和修改算法简化模型几何结构来自动优化分析所需的几何细节水平。模型尺寸的减小直接转化为节省计算时间。从优化模型获得的结果具有与输入数据中不确定性相当的准确性(例如岩体属性,地质等)。第一篇论文定义了优化框架,而另一篇论文则研究了其效率,并将其应用于实际的采矿和挖掘相关问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号