首页> 外文期刊>International journal of non-linear mechanics >Exact, approximate and numerical solutions for a variant of Stokes' first problem for a new class of non-linear fluids
【24h】

Exact, approximate and numerical solutions for a variant of Stokes' first problem for a new class of non-linear fluids

机译:斯托克斯第一类新型非线性流体问题的精确解,近似解和数值解

获取原文
获取原文并翻译 | 示例
           

摘要

Stress power-law fluids are a special sub-class of fluids defined through implicit constitutive relations, wherein the symmetric part of the velocity gradient depends on a power-law of the stress (see Eq. (2.2)), and were introduced recently to describe the non-Newtonian response of fluid bodies. Such fluids are counterparts to the classical power-law fluids wherein the stress is given in terms of a power-law for the symmetric part of the velocity gradient. Stress power-law fluids can describe phenomena that cannot be described by classical power-law fluids (see [1]). In this paper, first a new exact solution for a variant of Stokes' first problem for stress power-law fluids, when the exponent n = 0 (Navier-Stokes fluid), is obtained. Such an exact solution for the stress is in terms of a convolution integral, for which we establish bounds. We then compute the convolution integral using Gauss-Kronrod quadrature by ensuring that its value always lies within the bounds. Using the validated quadrature, we can accurately evaluate the exact solution and we the exact solution it to validate the numerical scheme employed in solving the governing equations for stress-power law fluids with arbitrary exponent n. Finally, for stress power-law fluids wherein the exponent n < 0 (stress-thickening fluids), we obtain an approximate solution for the stress that agrees well with the numerical solution. (C) 2015 Elsevier Ltd. All rights reserved.
机译:应力幂律流体是通过隐式本构关系定义的特殊流体子类,其中速度梯度的对称部分取决于应力的幂律(请参见公式(2.2)),并且最近被引入描述了流体的非牛顿反应。这种流体是经典幂律流体的对应物,其中,应力是根据速度梯度的对称部分的幂律给出的。应力幂律流体可描述经典幂律流体无法描述的现象(请参见[1])。在本文中,当指数n = 0(Navier-Stokes流体)时,首先获得了Stokes应力幂律流体的第一个问题的变体的新的精确解。对于应力的这种精确解决方案是根据卷积积分建立的。然后,通过确保其值始终位于边界内,我们使用高斯-克朗德罗德(Gauss-Kronrod)正交计算卷积积分。使用经过验证的正交函数,我们可以准确地评估精确解,并且可以通过精确解来验证用于求解具有任意指数n的应力幂律流体的控制方程的数值方案。最后,对于指数n <0的应力幂律流体(应力增稠流体),我们获得了与数值解非常吻合的应力近似解。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号