首页> 外文期刊>International journal of mechanics and materials in design >Modeling the brittle-ductile transition in ferritic steels: dislocation simulations
【24h】

Modeling the brittle-ductile transition in ferritic steels: dislocation simulations

机译:铁素体钢脆性-韧性转变模型:位错模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We present a model for the brittle-ductile transition in ferritic steels based on two dimensional discrete dislocation simulations of crack-tip plasticity. The sum of elastic fields of the crack and the emitted dislocations defines an elasto-plastic crack field. Effects of crack-tip blunting of the macrocrack are included in the simulations. The plastic zone characteristics are found to be in agreement with continuum models, with the added advantage that the hardening behavior comes out naturally in our model. The present model is composed of a macrocrack with microcracks ahead of it in its crack-plane. These microcracks represent potential fracture sites at internal inhomogeneities, such as brittle precipitates. Dislocations that are emitted from the crack-tip account for plasticity. When the tensile stress along the crack plane attains a critical value σ_F over a distance fracture is assumed to take place. The brittle-ductile transition curve is obtained by determining the fracture toughness at various temperatures. Factors that contribute to the sharp upturn in fracture toughness with increasing temperature are found to be: the increase in dislocations mobility, and the decrease in tensile stress ahead of the macrocrack tip due to increase in blunting, and the slight increase in fracture stress of microcracks due to increase in plasticity at the microcrack. The model not only predicts the sharp increase in fracture toughness near the brittle-ductile transition temperature but also predicts the limiting temperature above which valid fracture toughness values cannot be estimated; which should correspond to the ductile regime. The obtained results are in reasonable agreement when compared with the existing experimental data.
机译:我们基于裂纹尖端塑性的二维离散位错模拟,提出了一种铁素体钢脆-韧性转变的模型。裂纹的弹性场和发射的位错的总和定义了弹塑性裂纹场。模拟中包括了裂纹裂纹尖端钝化的影响。发现塑性区的特性与连续体模型一致,另外的优点是硬化行为在我们的模型中自然而然地显现出来。本模型由一个宏观裂纹组成,在裂纹平面中前方有微裂纹。这些微裂纹代表内部不均匀处的潜在断裂部位,例如脆性沉淀。从裂纹尖端发出的位错说明了塑性。当沿裂纹平面的拉应力达到远距离断裂的临界值σ_F时,就发生了。通过确定在各种温度下的断裂韧性获得脆性-韧性转变曲线。发现随温度升高而导致断裂韧性急剧上升的因素是:位错迁移率的增加以及由于钝化的增加而使大裂纹尖端前方的拉应力降低,以及微裂纹的断裂应力略有增加。由于微裂纹处的可塑性增加。该模型不仅预测脆性-韧性转变温度附近的断裂韧性急剧增加,而且还预测不能在其上估计有效断裂韧性值的极限温度。应该与韧性状态相对应。与现有实验数据比较,所得结果合理吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号