首页> 外文期刊>International journal of impact engineering >Dynamic buckling of elastic-plastic square tubes under axial impact―Ⅰ: stress wave propagation phenomenon
【24h】

Dynamic buckling of elastic-plastic square tubes under axial impact―Ⅰ: stress wave propagation phenomenon

机译:弹塑性方管在轴向冲击下的动态屈曲―Ⅰ:应力波传播现象

获取原文
获取原文并翻译 | 示例
           

摘要

The speeds of the stress waves that can propagate in an elastic-plastic medium with isotropic linear strain hardening in a plane stress state are obtained in order to analyse the influence of the transient deformation process on the initiation of buckling in square tubes under axial impact. The kinematic conditions across a surface of discontinuity were employed to obtain the stress wave propagation speeds for an initial condition [v_x] = V_0. It is shown that the plastic wave speeds depend on the stress state and on the direction of wave propagation. The material hardening properties have a stronger effect on the speed of the slow plastic wave, while the shear stress affects both the speeds of the fast and slow plastic waves. The magnitude of the instantaneously applied in-plane load [σ_(xx)] at t = 0, which results from an impact in the direction (n_x = 1, n_y = 0), is obtained as a function of the initial velocity V_0 when using the differential relationships along the characteristics. A numerical simulation of an in-plane impact on a finite plate by a large mass with an initial velocity shows that the predicted stress wave speeds from the theoretical analysis agree with the speed of the propagation of the plastic zone in the plate. It is shown that the initial buckling pattern forms within a sustained axial plastic flow and remains unchanged when large displacements develop. Therefore, it is concluded that the transient process in elastic-plastic plates subjected to an in-plane impact plays a significant role for the formation of the final buckling shape and this process can be analysed using estimates for the stress wave speeds obtained for an elastic-plastic medium in a plane stress state.
机译:获得了在平面应力状态下具有各向同性线性应变硬化的弹塑性介质中可以传播的应力波的速度,以便分析瞬态变形过程对方管在轴向冲击下屈曲的产生的影响。采用横跨不连续表面的运动学条件来获得初始条件[v_x] = V_0的应力波传播速度。结果表明,塑性波速取决于应力状态和波传播方向。材料的硬化特性对慢塑性波的速度有更强的影响,而剪切应力会影响快塑性波和慢塑性波的速度。在t = 0时瞬时施加的平面载荷[σ_(xx)]的大小是由于方向(n_x = 1,n_y = 0)的冲击而产生的,它是初始速度V_0的函数,当使用沿特征的微分关系。有限质量的板在初始速度下对平面的平面内冲击的数值模拟表明,理论分析预测的应力波速度与板中塑性区的传播速度一致。结果表明,最初的屈曲模式在持续的轴向塑性流动中形成,并在发生大位移时保持不变。因此,可以得出结论,受平面内冲击的弹塑性板中的瞬态过程对于最终屈曲形状的形成起着重要作用,并且可以使用对弹性体获得的应力波速度的估计来分析该过程。处于平面应力状态的塑性介质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号