首页> 外文期刊>International journal of impact engineering >Experimental investigation of axial impact buckling response of pseudo-elastic NiTi cylindrical shells
【24h】

Experimental investigation of axial impact buckling response of pseudo-elastic NiTi cylindrical shells

机译:拟弹性NiTi圆柱壳轴向冲击屈曲响应的实验研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The axial dynamic buckling responses of pseudo-elastic NiTi alloy cylindrical shells were investigated experimentally for various length/diameter ratios and end constraint conditions by using a modified single pulse SHPB apparatus. The results show that under single pulse axial loading it will first appear the axisymmetrical buckling waviness and then transit into non-axisymmetric buckling mode. This multiple buckling mode and mode transition behavior is possibly due to the wave effect under dynamic loading. The non-axisymmetric buckling patterns are significantly related to the length/diameter ratio and end constraint condition. The initial defect distribution will affect even dominate the non-axisymmetric buckling pattern. It was observed that multiple phase transition hinges (THs) formed in the specimen, which can increase the energy absorption efficiency. The critical buckling threshold and the energy absorption efficiency under impact loading are much greater than that under quasi-static loading. The THs and the dynamic buckling folds are recoverable for NiTi specimens due to the thermo-elastic austenite-martensite phase transition, which differs substantially from the behavior of the conventional elastic-plastic shells.
机译:使用改进的单脉冲SHPB装置,通过实验研究了伪弹性NiTi合金圆柱壳在各种长度/直径比和端部约束条件下的轴向动态屈曲响应。结果表明,在单脉冲轴向载荷下,它将首先出现轴对称屈曲波纹,然后过渡到非轴对称屈曲模式。这种多重屈曲模式和模式转换行为可能是由于动态载荷下的波浪效应引起的。非轴对称屈曲模式与长度/直径比和端部约束条件显着相关。初始缺陷分布将影响甚至主导非轴对称屈曲图案。观察到在样品中形成了多个相变铰链(THs),这可以提高能量吸收效率。冲击载荷下的临界屈曲阈值和能量吸收效率远大于准静态载荷下的临界屈曲阈值和能量吸收效率。由于热弹性奥氏体-马氏体相变,NiTi样品的TH和动态屈曲褶皱是可恢复的,这与常规弹塑性壳的行为大不相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号