首页> 外文期刊>International journal of impact engineering >Essential physics of target inertia in penetration problems missed by cavity expansion models
【24h】

Essential physics of target inertia in penetration problems missed by cavity expansion models

机译:腔扩展模型错过的穿透问题中目标惯性的基本物理学

获取原文
获取原文并翻译 | 示例
       

摘要

The problem of a rigid projectile with the shape of an ovoid of Rankine penetrating an incompressible elastic-perfectly-plastic target is used as an example to study the dependence of the drag force F on the penetration velocity V. The phenomenological functional form of the contact pressure P proposed by Hill (1980) during World War II, the analytical solution in Yarin et al. (1995), the numerical simulations in Rosenberg and Dekel (2009), as well as new numerical simulations in this work all consistently reveal the importance of a physical flow field in the target material. Below a critical value V-s of V, the drag force F is constant. The critical value V, determines the onset of separation of the target material from the projectile's surface. Axial inertia being converted into radial inertia in the target near the projectile's tip controls the physics of the separation process and the strong dependence of F on V for V > V-s. Cavity expansion models based on cylindrical or spherical flow fields miss the essential physics of this separation phenomenon and are incorrect when target inertia is important. Also, the numerical simulations indicate that the constant value of the drag force for V < V-s depends on the tip shape, which cannot be accurately predicted by cavity expansion models. Since cavity expansion models cannot accurately predict results of the simplest problem of a rigid projectile penetrating an incompressible elastic-perfectly-plastic target, it should not be assumed that these models are accurate for general target materials (which include compressibility, hardening and porosity), even though the models are simple to use. (C) 2016 Elsevier Ltd. All rights reserved.
机译:以兰金氏卵形的刚性弹丸穿透不可压缩的弹塑性目标为例,研究了拉力F对穿透速度V的依赖性。接触的现象学功能形式希尔(1980)在第二次世界大战期间提出的压力P是Yarin等人的分析解决方案。 (1995年),Rosenberg和Dekel(2009年)的数值模拟以及这项工作中的新数值模拟都一致地揭示了目标材料中物理流场的重要性。在V的临界值V-s以下,拖曳力F是恒定的。临界值V,决定目标材料从弹丸表面分离的开始。在弹丸尖端附近的目标中,轴向惯性被转换为径向惯性,这控制了分离过程的物理过程,并且控制了V> V-s时F对V的强烈依赖性。基于圆柱或球形流场的腔体膨胀模型错过了这种分离现象的本质物理原理,并且当目标惯性很重要时是不正确的。此外,数值模拟表明,V

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号