首页> 外文期刊>International journal of imaging systems and technology >Image-Guided Navigation of Single-Element Focused Ultrasound Transducer
【24h】

Image-Guided Navigation of Single-Element Focused Ultrasound Transducer

机译:单元素聚焦超声换能器的图像导航

获取原文
获取原文并翻译 | 示例
           

摘要

The spatial specificity and controllability of focused ultrasound (FUS), in addition to its ability to modify the excitability of neural tissue, allows for the selective and reversible neuromodulation of the brain function, with great potential in neurotherapeutics. Intrao-perative magnetic resonance imaging (MRI) guidance has limitations due to its complicated examination logistics, such as fixation through skull screws to mount the stereotactic frame, simultaneous sonica-tion in the MRI environment, and restrictions in choosing MR-com-patible materials. To overcome these limitations, an image-guidance system based on optical tracking and preoperative imaging data is developed, separating the imaging acquisition for guidance and soni-cation procedure for treatment. Techniques to define the local coordinates of the focal point of sonication are presented. First, mechanical calibration detects the concentric rotational motion of a rigid-body optical tracker, attached to a straight rod mimicking the sonication path, pivoted at the virtual FUS focus. The spatial error presented in the mechanical calibration was compensated further by MRI-based calibration, which estimates the spatial offset between the navigated focal point and the ground-truth location of the sonication focus obtained from a temperature-sensitive MR sequence. MRI-based calibration offered a significant decrease in spatial errors (1.9 ± 0.8 mm; 57% reduction) compared to the mechanical calibration method alone (4.4 ± 0.9 mm). Using the presented method, pulse-mode FUS was applied to the motor area of the rat brain, and successfully stimulated the motor cortex. The presented techniques can be readily adapted for the transcranial application of FUS to intact human brain.
机译:聚焦超声(FUS)的空间特异性和可控性,除了可以改变神经组织的兴奋性之外,还可以选择性和可逆地调节脑功能,在神经治疗学中具有巨大潜力。术中磁共振成像(MRI)指导由于其检查流程复杂而受到限制,例如通过颅骨螺钉固定以安装立体定位框架,在MRI环境中同时超声成像以及选择MR兼容材料的限制。为了克服这些局限性,开发了基于光学跟踪和术前成像数据的图像引导系统,将用于引导的成像采集和用于治疗的超声程序分开。介绍了定义超声处理焦点的局部坐标的技术。首先,机械校准可以检测刚性光学跟踪器的同心旋转运动,该跟踪器连接到模拟超声路径的直杆上,并在虚拟FUS焦点处旋转。通过基于MRI的校准进一步补偿了机械校准中出现的空间误差,该校准估计了从温度敏感的MR序列获得的导航焦点与超声聚焦的地面位置之间的空间偏移。与仅使用机械校准方法(4.4±0.9 mm)相比,基于MRI的校准可显着减少空间误差(1.9±0.8 mm;减少57%)。使用提出的方法,将脉冲模式FUS应用于大鼠大脑的运动区域,并成功刺激了运动皮层。提出的技术可以很容易地适应于FUS经颅应用到完整的人脑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号