首页> 外文期刊>International journal of hydrogen energy >Hysteresis loops of methane catalytic partial oxidation for hydrogen production under the effects of varied Reynolds number and Damkohler number
【24h】

Hysteresis loops of methane catalytic partial oxidation for hydrogen production under the effects of varied Reynolds number and Damkohler number

机译:雷诺数和达克勒数变化影响下甲烷催化部分氧化制氢的磁滞回线

获取原文
获取原文并翻译 | 示例
       

摘要

Hysteresis loops of catalytic partial oxidation of methane (CPOM) for hydrogen production under the effects of varied Reynolds number and Damkoehler number are investigated numerically in this study. The physical phenomena are predicted using the indirect mechanism, which consists of the total oxidation (or combustion), steam reforming and CO_2 reforming of methane in a catalyst bed. Numerical results reveal that, when the Damkoehler number is relatively low, a hysteresis loop of CPOM from varying Reynolds number develops. Increasing the Damkoehler number leads to the loop shifting toward the regime of high Reynolds number. However, once the Damkoehler number is large to a certain extent, the chemical reactions are always exhibited for the Reynolds number less than 2000. A closed loop is thus not observed. Alternatively, for a given Reynolds number, an ignited Damkoehler number and an extinguished Damkoehler number can be obtained. Accordingly, three different regions in the plot of Damkoehler number versus Reynolds number are identified. Physically, when the role played by Damkoehler number on CPOM is much more important than by the Reynolds number (Region I), the thermal effect governs the chemical reactions. In contrast, if the Reynolds number plays a key role in determining the CPOM (Region Ⅲ), the chemically frozen flow prevails over the catalyst bed. When the residence times of the total oxidation and convection in the catalyst bed are in an equivalent state (Region Ⅱ), CPOM is characterized by a dual-solution, rendering the hysteresis loops. From the distributions of ignited and extinguished Damkoehler numbers, the catalytic reactor and operation of partial oxidation of methane and other fuels can be designed accordingly.
机译:数值研究了在变化的雷诺数和达姆柯勒数的影响下,甲烷催化部分氧化(CPOM)制氢的磁滞回线。物理现象是使用间接机理预测的,该机理包括催化剂床中甲烷的总氧化(或燃烧),蒸汽重整和CO_2重整。数值结果表明,当Damkoehler数相对较低时,会因变化的雷诺数而产生CPOM的磁滞回线。增大Damkoehler数会导致环路向高雷诺数态转变。但是,一旦达姆科勒数大到一定程度,对于雷诺数小于2000的化学反应总是表现出来的。因此没有观察到闭环。替代地,对于给定的雷诺数,可以获得点燃的达姆柯勒数和熄灭的达姆柯勒数。因此,在Damkoehler数对雷诺数的图中确定了三个不同的区域。从物理上讲,当Damkoehler数对CPOM的作用比雷诺数(I区)重要得多时,热效应决定了化学反应。相反,如果雷诺数在决定CPOM(Ⅲ区)中起关键作用,则化学冻结流占整个催化剂床层的主导。当总氧化和对流在催化剂床中的停留时间处于等效状态时(Ⅱ区),CPOM具有双重溶液的特征,出现了磁滞回线。从点火和熄灭的Damkoehler数的分布,可以相应地设计催化反应器以及甲烷和其他燃料的部分氧化操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号