首页> 外文期刊>International journal of hydrogen energy >The competitive ionic conductivities in functional composite electrolytes based on the series of M-NLCO (M = Ge_(0.8)Sm_(0.2)O_(2-δ), Ge_(0.8)Gd_(0.2)O_(2-δ), Ge_(0.8)Y_(0.2)O_(2-δ);NLCO = 0.53Li_2CO3-0.47Na_2CO_3)
【24h】

The competitive ionic conductivities in functional composite electrolytes based on the series of M-NLCO (M = Ge_(0.8)Sm_(0.2)O_(2-δ), Ge_(0.8)Gd_(0.2)O_(2-δ), Ge_(0.8)Y_(0.2)O_(2-δ);NLCO = 0.53Li_2CO3-0.47Na_2CO_3)

机译:基于M-NLCO(M = Ge_(0.8)Sm_(0.2)O_(2-δ),Ge_(0.8)Gd_(0.2)O_(2-δ,Ge_)系列的功能复合电解质中的竞争离子电导率(0.8)Y_(0.2)O_(2-δ); NLCO = 0.53Li_2CO3-0.47Na_2CO_3)

获取原文
获取原文并翻译 | 示例
           

摘要

In order to identify competitive ion-conducting materials in ceria-carbonates composite electrolytes, M-NLCO (M = Ge_(0.8)Sm_(0.2)O_(2-δ), Ge_(0.8)Gd_(0.2)O_(2-δ), Ge_(0.8)Y_(0.2)O_(2-δ) (YDC); NLCO = 0.53Li_2CO_3-0.47Na_2CO_3) sintered at different temperatures (600° G, 625° G, 650° G, 675° G and 700° G) have been prepared and characterized. It is found that independent of systems, the 675° G-sintered composites in M-NLCO always present the highest conductivities because of the best NLCO distribution and interfacial microstructures. Moreover, among three composites (sintered at 675° C), the total (σ_t) and grain boundary (σ_(gb)) conductivities measured at 600° C are ranked as: SDC-NLCO (σ_(t-SDC-NLCO)~(600'c) = 9.1× 10~(-2)Scm~(-1) σ_(gb-sdc-nlco)~600'C= 28.1 × 10~(-2)Scm~(-1) , GDC-NLCO (σ_(t-SDC-NLCO)~(600'c) = 5.8 × 10~(-2)Scm~(-1). σ_(gb-sdc-nlco)~600'C = 18.9 × 10~(-2)Scm~(-1)) > YDC-NLCO (σ_(t-SDC-NLCO)~(600'c) = 3.1 × 10~(-2)Scm~(-1). σ_(gb-sdc-nlco)~600'C = 12.6 ×10~(-2) Scm~(-1)), which is attributed to ionic-radius compatibility between the dopant and the host as well as the NLCO distribution and interfacial microstructures. It can be concluded that ionic-radius compatibility between the dopant and the host, NLCO distribution and interfacial microstructures have important effects on improving ionic conductivities for ceria-carbonates composite electrolytes.
机译:为了鉴定二氧化铈-碳酸盐复合电解质中竞争性的离子导电材料,M-NLCO(M = Ge_(0.8)Sm_(0.2)O_(2-δ),Ge_(0.8)Gd_(0.2)O_(2-δ ),Ge_(0.8)Y_(0.2)O_(2-δ)(YDC); NLCO = 0.53Li_2CO_3-0.47Na_2CO_3)在不同温度(600°G,625°G,650°G,675°G和700)下烧结°G)已准备并表征。结果发现,由于最佳的NLCO分布和界面微观结构,M-NLCO中的675°G烧结复合材料始终表现出最高的电导率。此外,在三种复合材料(在675°C下烧结)中,在600°C下测得的总电导率(σ_t)和晶界电导率(σ_(gb))排序为:SDC-NLCO(σ_(t-SDC-NLCO)〜 (600'c)= 9.1×10〜(-2)Scm〜(-1)σ_(gb-sdc-nlco)〜600'C = 28.1×10〜(-2)Scm〜(-1),GDC- NLCO(σ_(t-SDC-NLCO)〜(600'c)= 5.8×10〜(-2)Scm〜(-1)。σ_(gb-sdc-nlco)〜600'C = 18.9×10〜( -2)Scm〜(-1))> YDC-NLCO(σ_(t-SDC-NLCO)〜(600'c)= 3.1×10〜(-2)Scm〜(-1)。σ_(gb-sdc -nlco)〜600'C = 12.6×10〜(-2)Scm〜(-1)),这归因于掺杂剂与主体之间的离子半径相容性以及NLCO分布和界面微结构。可以得出结论,掺杂剂与主体之间的离子半径兼容性,NLCO分布和界面微结构对改善二氧化铈-碳酸盐复合电解质的离子电导率具有重要影响。

著录项

  • 来源
    《International journal of hydrogen energy》 |2011年第11期|p.6840-6850|共11页
  • 作者单位

    State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, PR China,;

    State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, PR China,;

    State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, PR China;

    School of Chemistry and Life Science, Changchun University 0/ Technology, Changchun 130012, PR China;

    State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, PR China;

    State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun 130022, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    solid oxide fuel cells; ceria-carbonates composite; electrolytes; interfacial microstructures; ionic conductivities; intermediate and low-temperature;

    机译:固体氧化物燃料电池;二氧化铈-碳酸盐复合物;电解质界面微结构离子电导率中低温;

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号